We present DeepSeek-Coder-V2, an open-source Mixture-of-Experts (MoE) code language model that achieves performance comparable to GPT4-Turbo in code-specific tasks. Specifically, DeepSeek-Coder-V2 is further pre-trained from an intermediate checkpoint of DeepSeek-V2 with additional 6 trillion tokens. Through this continued pre-training, DeepSeek-Coder-V2 substantially enhances the coding and mathematical reasoning capabilities of DeepSeek-V2, while maintaining comparable performance in general language tasks.

Qwen 2

After months of efforts, we are pleased to announce the evolution from Qwen1.5 to Qwen2. This time, we bring to you: Pretrained and instruction-tuned models of 5 sizes, including Qwen2-0.5B, Qwen2-1.5B, Qwen2-7B, Qwen2-57B-A14B, and Qwen2-72B; Having been trained on data in 27 additional languages besides English and Chinese; State-of-the-art performance in a large number of benchmark evaluations; Significantly improved performance in coding and mathematics; Extended context length support up to 128K tokens with Qwen2-7B-Instruct and Qwen2-72B-Instruct.


We introduce DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and efficient inference. It comprises 236B total parameters, of which 21B are activated for each token. Compared with DeepSeek 67B, DeepSeek-V2 achieves stronger performance, and meanwhile saves 42.5% of training costs, reduces the KV cache by 93.3%, and boosts the maximum generation throughput to more than 5 times.

Llama 3

Today, we’re excited to share the first two models of the next generation of Llama, Meta Llama 3, available for broad use. This release features pretrained and instruction-fine-tuned language models with 8B and 70B parameters that can support a broad range of use cases. This next generation of Llama demonstrates state-of-the-art performance on a wide range of industry benchmarks and offers new capabilities, including improved reasoning.

Qwen 1.5

With Qwen1.5, we are open-sourcing base and chat models across six sizes: 0.5B, 1.8B, 4B, 7B, 14B, 32B, 72B, 110B and an MoE model. In line with tradition, we’re also providing quantized models, including Int4 and Int8 GPTQ models, as well as AWQ and GGUF quantized models. To enhance the developer experience, we’ve merged Qwen’s code into Hugging Face transformers.

DeepSeek MoE

DeepSeekMoE 16B is a Mixture-of-Experts (MoE) language model with 16.4B parameters. It employs an innovative MoE architecture, which involves two principal strategies: fine-grained expert segmentation and shared experts isolation. It is trained from scratch on 2T English and Chinese tokens, and exhibits comparable performance with DeekSeek 7B and LLaMA2 7B, with only about 40% of computations.

Mixture of Experts Explained

With the release of Mixtral 8x7B (announcement, model card), a class of transformer has become the hottest topic in the open AI community: Mixture of Experts, or MoEs for short. In this blog post, we take a look at the building blocks of MoEs, how they’re trained, and the tradeoffs to consider when serving them for inference.

Qwen Chat and Pretrained Large Language Model

We introduce Qwen series, now including Qwen, the base language models, namely Qwen-1.8B, Qwen-7B, Qwen-14B, and Qwen-72B, as well as Qwen-Chat, the chat models, namely Qwen-1.8B-Chat, Qwen-7B-Chat, Qwen-14B-Chat, and Qwen-72B-Chat. Links are on the above table. Click them and check the model cards. Also, we release the technical report. Please click the paper link and check it out!