Chatbot Arena

Attribution LMSYS β€’ June 17, 2025

This leaderboard is based on the following benchmarks.

  • Chatbot Arena - a crowdsourced, randomized battle platform for large language models (LLMs). We use 3M+ user votes to compute Elo ratings.
  • MMLU - a test to measure a model’s multitask accuracy on 57 tasks.
  • Arena-Hard-Auto - an automatic evaluation tool for instruction-tuned LLMs.

| Vote | Blog | GitHub | Paper | Dataset | Twitter | Discord |

Best Open LM

ModelArena EloMMLULicense
DeepSeek DeepSeek-R1-0528142190.8MIT
Qwen Qwen3-235B-A22B-no-thinking138788.5Apache 2.0
DeepSeek DeepSeek-V3-0324138488.5MIT
Qwen Qwen3-235B-A22B136388.5Apache 2.0
Gemini Gemma-3-27B-it1356Gemma

Full Leaderboard
ModelArena EloCodingVisionArena HardMMLUVotesOrganizationLicense
πŸ₯‡ Gemini-2.5-Pro-Preview-06-0514801492134796.48825GoogleProprietary
πŸ₯‡ o3-2025-04-1614271443129816019OpenAIProprietary
πŸ₯‡ ChatGPT-4o-latest (2025-03-26)14261436130920638OpenAIProprietary
πŸ₯‡ DeepSeek-R1-05281421142893.290.88423DeepSeekMIT
πŸ₯‡ Gemini-2.5-Flash-Preview-05-2014201429130214034GoogleProprietary
πŸ₯‡ Grok-3-Preview-02-241419142992.722643xAIProprietary
πŸ₯‡ GPT-4.5-Preview14131417125315271OpenAIProprietary
πŸ₯ˆ Gemini-2.0-Pro-Exp-02-0513951395123920120GoogleProprietary
πŸ₯ˆ Gemini-2.0-Flash-Thinking-Exp-01-2113951380127527618GoogleProprietary
πŸ₯ˆ Qwen3-235B-A22B-no-thinking1387140595.688.57837AlibabaApache 2.0
πŸ₯ˆ GPT-4.1-2025-04-1413851393127614635OpenAIProprietary
πŸ₯ˆ DeepSeek-V3-03241384139885.588.517365DeepSeekMIT
πŸ₯ˆ Gemini-2.5-Flash-Lite-Preview-06-17-Thinking1377138812313905GoogleProprietary
πŸ₯ˆ Claude Opus 4 (20250514)13731414123115254AnthropicProprietary
πŸ₯ˆ DeepSeek-R11373137993.290.819430DeepSeekMIT
πŸ₯ˆ Hunyuan-Turbos-20250416137313766747TencentProprietary
πŸ₯ˆ Mistral Medium 31365138713385MistralProprietary
πŸ₯ˆ o1-2024-12-1713651374122892.191.829038OpenAIProprietary
πŸ₯ˆ Qwen3-235B-A22B1363138695.688.511429AlibabaApache 2.0
πŸ₯ˆ Gemini-2.0-Flash-00113631362121634803GoogleProprietary
πŸ₯ˆ o4-mini-2025-04-1613621381125314392OpenAIProprietary
πŸ₯ˆ Grok-3-Mini-beta136113876984xAIProprietary
πŸ₯ˆ Qwen2.5-Max1360136630065AlibabaProprietary
πŸ₯ˆ Gemma-3-27B-it1356133622300GoogleGemma
πŸ₯ˆ Claude Sonnet 4 (20250514)13461385122112143AnthropicProprietary
πŸ₯ˆ o3-mini-high1340137919404OpenAIProprietary
πŸ₯ˆ GPT-4.1-mini-2025-04-1413381375123713519OpenAIProprietary
πŸ₯‰ Gemma-3-12B-it133613073976GoogleGemma
πŸ₯‰ DeepSeek-V31334133685.588.522841DeepSeekDeepSeek
πŸ₯‰ QwQ-32B1332134616438AlibabaApache 2.0
πŸ₯‰ Gemini-2.0-Flash-Lite13281337115626104GoogleProprietary
πŸ₯‰ Qwen-Plus-0125132613366055AlibabaProprietary
πŸ₯‰ GLM-4-Plus-0111132613066028ZhipuProprietary
πŸ₯‰ Command A (03-2025)1325133421092CohereCC-BY-NC-4.0
πŸ₯‰ o3-mini1321136233256OpenAIProprietary
πŸ₯‰ Step-2-16K-Exp132013115126StepFunProprietary
πŸ₯‰ o1-mini131913689254951OpenAIProprietary
πŸ₯‰ Gemini-1.5-Pro-00213171306122258645GoogleProprietary
πŸ₯‰ Claude 3.7 Sonnet (thinking-32k)13151348122322385AnthropicProprietary
πŸ₯‰ Llama-3.3-Nemotron-Super-49B-v11312131688.3862371NvidiaNvidia
πŸ₯‰ Hunyuan-Turbo-0110131113322510TencentProprietary
πŸ₯‰ Claude 3.7 Sonnet13071344120526866AnthropicProprietary
πŸ₯‰ Grok-2-08-131303129887.567084xAIProprietary
πŸ₯‰ Gemma-3n-e4b-it130312793913GoogleGemma
πŸ₯‰ Yi-Lightning1302131881.52896801 AIProprietary
πŸ₯‰ GPT-4o-2024-05-1313001308120679.2188.7117747OpenAIProprietary
πŸ₯‰ Claude 3.5 Sonnet (20241022)12991341118785.288.774230AnthropicProprietary
Deepseek-v2.5-1210129413137243DeepSeekDeepSeek
Athene-v2-Chat-72B129113168526074NexusFlowNexusFlow
Gemma-3-4B-it129012624321GoogleGemma
Llama-4-Maverick-17B-128E-Instruct12881306115614164MetaLlama 4
Hunyuan-Large-2025-02-10128713083856TencentProprietary
GPT-4o-mini-2024-07-1812871298112374.948272536OpenAIProprietary
Gemini-1.5-Flash-00212871270120637021GoogleProprietary
GPT-4.1-nano-2025-04-141286130911176302OpenAIProprietary
Llama-3.1-405B-Instruct-bf161284129688.643788MetaLlama 3.1
Llama-3.1-Nemotron-70B-Instruct1284128784.97577NvidiaLlama 3.1
Llama-3.1-405B-Instruct-fp81283129169.388.663038MetaLlama 3.1
Grok-2-Mini-08-131281127855442xAIProprietary
Yi-Lightning-lite128012821706701 AIProprietary
Qwen-Max-09191279129517432AlibabaQwen
Hunyuan-Standard-2025-02-10127612864014TencentProprietary
Qwen2.5-72B-Instruct127212987841519AlibabaQwen
GPT-4-Turbo-2024-04-0912721278115182.63102133OpenAIProprietary
Llama-3.3-70B-Instruct1272127345404MetaLlama-3.3
Mistral-Small-3.1-24B-Instruct-2503126612913258MistralApache 2.0
Athene-70B1266126977.620580NexusFlowCC-BY-NC-4.0
GPT-4-1106-preview12651268103748OpenAIProprietary
Mistral-Large-24111264128170.4229633MistralMRL
Llama-3.1-70B-Instruct1263126755.738658637MetaLlama 3.1
Claude 3 Opus12621266107660.3686.8202641AnthropicProprietary
Amazon Nova Pro 1.012601278104426371AmazonProprietary
GPT-4-0125-preview1260125977.9697079OpenAIProprietary
Llama-3.1-Tulu-3-70B125912493010Ai2Llama 3.1
Claude 3.5 Haiku (20241022)12531283115845698AnthropicPropretary
Reka-Core-20240904125012377948Reka AIProprietary
Gemini-1.5-Flash-00112421247107249.6178.965661GoogleProprietary
Jamba-1.5-Large1237124381.29125AI21 LabsJamba Open
Deepseek-v2-API-06281235125719508DeepSeek AIDeepSeek
Gemma-2-27B-it1235122557.5179538GoogleGemma license
Mistral-Small-24B-Instruct-25011233124715321MistralApache 2.0
Qwen2.5-Coder-32B-Instruct123212765730AlibabaApache 2.0
Amazon Nova Lite 1.012321251106120646AmazonProprietary
Gemma-2-9B-it-SimPO1231121210548PrincetonMIT
Command R+ (08-2024)1231119710535CohereCC-BY-NC-4.0
Deepseek-Coder-v2-07241229128262.311725DeepSeekProprietary
Gemini-1.5-Flash-8B-00112281224110737697GoogleProprietary
Llama-3.1-Nemotron-51B-Instruct122712263889NvidiaLlama 3.1
Nemotron-4-340B-Instruct1224121420608NvidiaNvidia
Aya-Expanse-32B1224120828768CohereCC-BY-NC-4.0
GLM-4-05201222123263.8410221Zhipu AIProprietary
Llama-3-70B-Instruct1222121546.5782163629MetaLlama 3
Phi-41221123825213MicrosoftMIT
OLMo-2-0325-32B-Instruct122112123460Allen AIApache-2.0
Reka-Flash-20240904122112078132Reka AIProprietary
Claude 3 Sonnet12161228104846.879113067AnthropicProprietary
Amazon Nova Micro 1.01213122620654AmazonProprietary
Gemma-2-9B-it1207118957197GoogleGemma license
Hunyuan-Standard-256K120412422901TencentProprietary
Qwen2-72B-Instruct1202120246.8684.238872AlibabaQianwen LICENSE
GPT-4-0314120112115086.455962OpenAIProprietary
Llama-3.1-Tulu-3-8B120111943074Ai2Llama 3.1
Ministral-8B-2410119712175111MistralMRL
Claude 3 Haiku11951205100041.4775.2122309AnthropicProprietary
Aya-Expanse-8B1195118110391CohereCC-BY-NC-4.0
Command R (08-2024)1195117710851CohereCC-BY-NC-4.0
DeepSeek-Coder-V2-Instruct1194125415753DeepSeek AIDeepSeek License
Llama-3.1-8B-Instruct1191120221.347352578MetaLlama 3.1
Jamba-1.5-Mini1191119669.79274AI21 LabsJamba Open
GPT-4-06131178118237.991614OpenAIProprietary
Qwen1.5-110B-Chat1176119080.427430AlibabaQianwen LICENSE
Yi-1.5-34B-Chat1173117876.82513501 AIApache-2.0
Llama-3-8B-Instruct1167116120.5668.4109056MetaLlama 3
InternLM2.5-20B-chat1164117410599InternLMOther
Claude-1116411517721149AnthropicProprietary
Qwen1.5-72B-Chat1163117536.1277.540658AlibabaQianwen LICENSE
Mixtral-8x22b-Instruct-v0.11163116836.3677.853751MistralApache 2.0
Mistral Medium1163116831.975.335556MistralProprietary
Gemma-2-2b-it1159112251.348892GoogleGemma license
Granite-3.1-8B-Instruct115811893289IBMApache 2.0
Claude-2.01147115023.9978.512763AnthropicProprietary
Gemini-1.0-Pro-0011147111871.818800GoogleProprietary
Zephyr-ORPO-141b-A35b-v0.1114211404854HuggingFaceApache 2.0
Qwen1.5-32B-Chat1141116473.422765AlibabaQianwen LICENSE
Phi-3-Medium-4k-Instruct1138114133.377826105MicrosoftMIT
Granite-3.1-2B-Instruct113511633380IBMApache 2.0
Starling-LM-7B-beta1134114523.0116676NexusflowApache-2.0
Claude-2.11133114722.7737699AnthropicProprietary
GPT-3.5-Turbo-06131132115024.8238955OpenAIProprietary
Mixtral-8x7B-Instruct-v0.11129113023.470.676126MistralApache 2.0
Claude-Instant-11126112473.420631AnthropicProprietary
Yi-34B-Chat1126112123.1573.51591701 AIYi License
Qwen1.5-14B-Chat1124114167.618687AlibabaQianwen LICENSE
WizardLM-70B-v1.01122108663.78383MicrosoftLlama 2
DBRX-Instruct-Preview1118113324.6373.733743DatabricksDBRX LICENSE
Llama-3.2-3B-Instruct111810968390MetaLlama 3.2
Phi-3-Small-8k-Instruct1117112329.7775.718476MicrosoftMIT
Tulu-2-DPO-70B1114110814.996658AllenAI/UWAI2 ImpACT Low-risk
Granite-3.0-8B-Instruct110811137002IBMApache 2.0
Llama-2-70B-chat1108108711.556339595MetaLlama 2
OpenChat-3.5-01061107111765.812990OpenChatApache-2.0
Vicuna-33B110610838.6359.222936LMSYSNon-commercial
Snowflake Arctic Instruct1105109217.6167.334173SnowflakeApache 2.0
Starling-LM-7B-alpha1104109512.863.910415UC BerkeleyCC-BY-NC-4.0
Gemma-1.1-7B-it1099110012.0964.325070GoogleGemma license
Nous-Hermes-2-Mixtral-8x7B-DPO109910953836NousResearchApache-2.0
NV-Llama2-70B-SteerLM-Chat1096103868.53636NvidiaLlama 2
pplx-70B-online109310436898Perplexity AIProprietary
DeepSeek-LLM-67B-Chat1092109571.34988DeepSeek AIDeepSeek License
OpenChat-3.51092106964.38106OpenChatApache-2.0
Granite-3.0-2B-Instruct108911037191IBMApache 2.0
OpenHermes-2.5-Mistral-7B108910735088NousResearchApache-2.0
Mistral-7B-Instruct-v0.21088108912.5720067MistralApache-2.0
Phi-3-Mini-4K-Instruct-June-241086109770.912808MicrosoftMIT
Qwen1.5-7B-Chat10851105614872AlibabaQianwen LICENSE
Phi-3-Mini-4k-Instruct1082110168.821097MicrosoftMIT
Llama-2-13b-chat1078106753.619722MetaLlama 2
Dolphin-2.2.1-Mistral-7B107810411714Cognitive ComputationsApache-2.0
SOLAR-10.7B-Instruct-v1.01077106366.24286Upstage AICC-BY-NC-4.0
WizardLM-13b-v1.21074104152.77176MicrosoftLlama 2
Llama-3.2-1B-Instruct106910628523MetaLlama 3.2
Qwen2.5-VL-32B-Instruct12121505AlibabaApache 2.0
Step-1o-Vision-32k (highres)11862891StepFunProprietary
Qwen2.5-VL-72B-Instruct11683884AlibabaQwen
Pixtral-Large-241111535546MistralMRL
Llama-4-Scout-17B-16E-Instruct11511029MetaLlama
Qwen-VL-Max-111911281449AlibabaProprietary
Step-1V-32K11121553StepFunProprietary
Qwen2-VL-72b-Instruct11116028AlibabaQwen
Molmo-72B-092410763092AI2Apache 2.0
Pixtral-12B-240910727623MistralApache 2.0
Llama-3.2-90B-Vision-Instruct10708829MetaLlama 3.2
InternVL2-26B10675265OpenGVLabMIT
Hunyuan-Standard-Vision-2024-12-311064811TencentProprietary
Aya-Vision-32B1058849CohereCC-BY-NC-4.0
Qwen2-VL-7B-Instruct10545854AliabaApache 2.0
Yi-Vision1046123701 AIProprietary
Llama-3.2-11B-Vision-Instruct10324893MetaLlama 3.2

If you want to see more models, please help us add them.

πŸ’» Code: The Arena Elo ratings are computed by this notebook. The MT-bench scores (single-answer grading on a scale of 10) are computed by fastchat.llm_judge. The MMLU scores are computed by InstructEval. Higher values are better for all benchmarks. Empty cells mean not available. The latest and detailed leaderboard is here.

More Statistics for Chatbot Arena

πŸ”— Arena Statistics

Transition from online Elo rating system to Bradley-Terry model

We adopted the Elo rating system for ranking models since the launch of the Arena. It has been useful to transform pairwise human preference to Elo ratings that serve as a predictor of winrate between models. Specifically, if player A has a rating of RA and player B a rating of RB, the probability of player A winning is

{\displaystyle E_{\mathsf {A}}={\frac {1}{1+10^{(R_{\mathsf {B}}-R_{\mathsf {A}})/400}}}~.}

ELO rating has been used to rank chess players by the international community for over 60 years. Standard Elo rating systems assume a player’s performance changes overtime. So an online algorithm is needed to capture such dynamics, meaning recent games should weigh more than older games. Specifically, after each game, a player’s rating is updated according to the difference between predicted outcome and actual outcome.

{\displaystyle R_{\mathsf {A}}'=R_{\mathsf {A}}+K\cdot (S_{\mathsf {A}}-E_{\mathsf {A}})~.}

This algorithm has two distinct features:

  1. It can be computed asynchronously by players around the world.
  2. It allows for players performance to change dynamically – it does not assume a fixed unknown value for the players rating.

This ability to adapt is determined by the parameter K which controls the magnitude of rating changes that can affect the overall result. A larger K essentially put more weight on the recent games, which may make sense for new players whose performance improves quickly. However as players become more senior and their performance β€œconverges” then a smaller value of K is more appropriate. As a result, USCF adopted K based on the number of games and tournaments completed by the player (reference). That is, the Elo rating of a senior player changes slower than a new player.

When we launched the Arena, we noticed considerable variability in the ratings using the classic online algorithm. We tried to tune the K to be sufficiently stable while also allowing new models to move up quickly in the leaderboard. We ultimately decided to adopt a bootstrap-like technique to shuffle the data and sample Elo scores from 1000 permutations of the online plays. You can find the details in this notebook. This provided consistent stable scores and allowed us to incorporate new models quickly. This is also observed in a recent work by Cohere. However, we used the same samples to estimate confidence intervals which were therefore too wide (effectively CI’s for the original online Elo estimates).

In the context of LLM ranking, there are two important differences from the classic Elo chess ranking system. First, we have access to the entire history of all games for all models and so we don’t need a decentralized algorithm. Second, most models are static (we have access to the weights) and so we don’t expect their performance to change. However, it is worth noting that the hosted proprietary models may not be static and their behavior can change without notice. We try our best to pin specific model API versions if possible.

To improve the quality of our rankings and their confidence estimates, we are adopting another widely used rating system called the Bradley–Terry (BT) model. This model actually is the maximum likelihood (MLE) estimate of the underlying Elo model assuming a fixed but unknown pairwise win-rate. Similar to Elo rating, BT model is also based on pairwise comparison to derive ratings of players to estimate win rate between each other. The core difference between BT model vs the online Elo system is the assumption that player’s performance does not change (i.e., game order does not matter) and the computation takes place in a centralized fashion.