Chatbot Arena

Attribution LMSYS February 17, 2025

This leaderboard is based on the following benchmarks.

  • Chatbot Arena - a crowdsourced, randomized battle platform for large language models (LLMs). We use 2.6M+ user votes to compute Elo ratings.
  • MMLU - a test to measure a model’s multitask accuracy on 57 tasks.
  • Arena-Hard-Auto - an automatic evaluation tool for instruction-tuned LLMs.

| Vote | Blog | GitHub | Paper | Dataset | Twitter | Discord |

Best Open LM

ModelArena EloMMLULicense
DeepSeek DeepSeek-R1136190.8MIT
DeepSeek DeepSeek-V3131788.5DeepSeek
Qwen Qwen2.5-72B-Instruct125786.8Qwen
Meta Llama-3.3-70B-Instruct125586Llama 3.3

Full Leaderboard
ModelArena EloCodingVisionArena HardMMLUVotesOrganizationLicense
🥇🏆chocolate (Early Grok-3)140213997829xAIProprietary
🥈 Gemini-2.0-Flash-Thinking-Exp-01-2113851368128013336GoogleProprietary
🥈 Gemini-2.0-Pro-Exp-02-0513791372125211197GoogleProprietary
🥈 ChatGPT-4o-latest (2025-01-29)13771360127610529OpenAIProprietary
🥈 DeepSeek-R1136113625079DeepSeekMIT
🥈 Gemini-2.0-Flash-0011356135312439092GoogleProprietary
🥈 o1-2024-12-171353136390.415437OpenAIProprietary
🥉 Qwen2.5-Max133213357370AlibabaProprietary
🥉 DeepSeek-V31317131717717DeepSeekDeepSeek
🥉 Qwen2.5-Plus-0125131313163682AlibabaProprietary
🥉 Gemini-2.0-Flash-Lite-Preview-02-051310132211538465GoogleProprietary
🥉 GLM-4-Plus-0111130812914171ZhipuProprietary
🥉 o3-mini130513559338OpenAIProprietary
🥉 o1-mini130413539255053OpenAIProprietary
🥉 Step-2-16K-Exp130412965133StepFunProprietary
🥉 Gemini-1.5-Pro-00213021290122153271GoogleProprietary
🥉 Grok-2-08-131288128267117xAIProprietary
🥉 Yi-Lightning1287130381.52895501 AIProprietary
🥉 Claude 3.5 Sonnet (20241022)12841325118485.288.754384AnthropicProprietary
Deepseek-v2.5-1210127912977247DeepSeekDeepSeek
Athene-v2-Chat-72B127513008526182NexusFlowNexusFlow
GPT-4o-mini-2024-07-1812731284112474.948264411OpenAIProprietary
Gemini-1.5-Flash-00212711254120537039GoogleProprietary
Llama-3.1-405B-Instruct1269128088.629561MetaLlama 3.1
Llama-3.1-Nemotron-70B-Instruct1268127184.97598NvidiaLlama 3.1
Grok-2-Mini-08-131266126255479xAIProprietary
Yi-Lightning-lite126412671706201 AIProprietary
Qwen2.5-72B-Instruct125712837841575AlibabaQwen
GPT-4-Turbo-2024-04-0912561263115182.63102116OpenAIProprietary
Llama-3.3-70B-Instruct1255125823945MetaLlama-3.3
Mistral-Large-24071252126970.4248191MistralMistral Research
GPT-4-1106-preview12501253103732OpenAIProprietary
Athene-70B1250125377.620602NexusFlowCC-BY-NC-4.0
Llama-3.1-70B-Instruct1248125155.738658756MetaLlama 3.1
Claude 3 Opus12471250107660.3686.8202670AnthropicProprietary
Mistral-Large-24111246126518879MistralMRL
Amazon Nova Pro 1.012461260104417108AmazonProprietary
GPT-4-0125-preview1245124477.9697040OpenAIProprietary
Llama-3.1-Tulu-3-70B124412313016Ai2Llama 3.1
Yi-Large-preview1240124571.485164901 AIProprietary
Claude 3.5 Haiku (20241022)1236126319050AnthropicPropretary
Reka-Core-20240904123512227933Reka AIProprietary
Reka-Core-202407221231120813288Reka AIProprietary
Qwen-Plus-08281227124514612AlibabaProprietary
Gemini-1.5-Flash-00112271232107249.6178.965662GoogleProprietary
Jamba-1.5-Large1221122881.29123AI21 LabsJamba Open
Deepseek-v2-API-06281220124219500DeepSeek AIDeepSeek
Gemma-2-27B-it1220121057.5176608GoogleGemma license
Qwen2.5-Coder-32B-Instruct121712615721AlibabaApache 2.0
Amazon Nova Lite 1.012171234106015012AmazonProprietary
Mistral-Small-24B-Instruct-2501121712333481MistralApache 2.0
Gemma-2-9B-it-SimPO1216119610553PrincetonMIT
Command R+ (08-2024)1215118110538CohereCC-BY-NC-4.0
Deepseek-Coder-v2-07241214126662.311724DeepSeekProprietary
Yi-Large1213122063.71663201 AIProprietary
Gemini-1.5-Flash-8B-00112131208110637728GoogleProprietary
Llama-3.1-Nemotron-51B-Instruct121112113895NvidiaLlama 3.1
Nemotron-4-340B-Instruct1209119820605NvidiaNVIDIA Open Model
Aya-Expanse-32B1209119228806CohereCC-BY-NC-4.0
Gemini App (2024-01-24)1208117111822GoogleProprietary
GLM-4-05201207121663.8410215Zhipu AIProprietary
Llama-3-70B-Instruct1207120046.5782163746MetaLlama 3
Phi-41205123411133MicrosoftMIT
Reka-Flash-20240904120511918125Reka AIProprietary
Gemini-1.5-Flash-8B-Exp-082712051189111225356GoogleProprietary
Claude 3 Sonnet12011213104846.879113001AnthropicProprietary
Reka-Flash-202407221201118713727Reka AIProprietary
Reka-Core-2024050112001190101583.262561Reka AIProprietary
Amazon Nova Micro 1.01198121015029AmazonProprietary
Gemma-2-9B-it1192117354333GoogleGemma license
Command R+ (04-2024)1190116433.0780864CohereCC-BY-NC-4.0
Hunyuan-Standard-256K118912272898TencentProprietary
Qwen2-72B-Instruct1187118746.8684.238877AlibabaQianwen LICENSE
GPT-4-0314118611965086.455947OpenAIProprietary
Llama-3.1-Tulu-3-8B118511783071Ai2Llama 3.1
GLM-4-01161183119155.727575Zhipu AIProprietary
Qwen-Max-04281183119025678AlibabaProprietary
Ministral-8B-2410118212015108MistralMRL
Aya-Expanse-8B1180116410469CohereCC-BY-NC-4.0
Command R (08-2024)1180116210843CohereCC-BY-NC-4.0
Claude 3 Haiku11791189100041.4775.2122288AnthropicProprietary
DeepSeek-Coder-V2-Instruct1178123915757DeepSeek AIDeepSeek License
Llama-3.1-8B-Instruct1176118621.347352635MetaLlama 3.1
Jamba-1.5-Mini1176118169.79271AI21 LabsJamba Open
Reka-Flash-Preview-2024061111651155102420410Reka AIProprietary
GPT-4-06131163116737.991617OpenAIProprietary
Qwen1.5-110B-Chat1161117580.427448AlibabaQianwen LICENSE
Mistral-Large-24021157117037.7181.264904MistralProprietary
Yi-1.5-34B-Chat1157116276.82513001 AIApache-2.0
Reka-Flash-21B-online1156114716025Reka AIProprietary
QwQ-32B-Preview115311463413AlibabaApache 2.0
Llama-3-8B-Instruct1152114620.5668.4109223MetaLlama 3
InternLM2.5-20B-chat1149115810591InternLMOther
Claude-1114911367721159AnthropicProprietary
Command R (04-2024)1149112317.0256361CohereCC-BY-NC-4.0
Mixtral-8x22b-Instruct-v0.11148115336.3677.853777MistralApache 2.0
Mistral Medium1148115231.975.335554MistralProprietary
Reka-Flash-21B1148114173.525808Reka AIProprietary
Qwen1.5-72B-Chat1147116036.1277.540652AlibabaQianwen LICENSE
Granite-3.1-8B-Instruct114311723303IBMApache 2.0
Gemma-2-2b-it1143110851.346048GoogleGemma license
Claude-2.01132113523.9978.512761AnthropicProprietary
Gemini-1.0-Pro-0011131110371.818788GoogleProprietary
Zephyr-ORPO-141b-A35b-v0.1112711244861HuggingFaceApache 2.0
Qwen1.5-32B-Chat1125114973.422762AlibabaQianwen LICENSE
Mistral-Next1124113227.3712374MistralProprietary
Phi-3-Medium-4k-Instruct1123112533.377826105MicrosoftMIT
Granite-3.1-2B-Instruct111911463386IBMApache 2.0
Starling-LM-7B-beta1119112923.0116669NexusflowApache-2.0
Claude-2.11118113222.7737693AnthropicProprietary
GPT-3.5-Turbo-06131117113524.8238944OpenAIProprietary
Mixtral-8x7B-Instruct-v0.11114111423.470.676125MistralApache 2.0
Claude-Instant-11111110973.420619AnthropicProprietary
Yi-34B-Chat1111110623.1573.51592101 AIYi License
Gemini Pro1111109217.871.86559GoogleProprietary
Qwen1.5-14B-Chat1109112667.618670AlibabaQianwen LICENSE
GPT-3.5-Turbo-01251106112423.3468857OpenAIProprietary
GPT-3.5-Turbo-03141106111518.05705645OpenAIProprietary
WizardLM-70B-v1.01106107163.78383MicrosoftLlama 2
DBRX-Instruct-Preview1103111824.6373.733730DatabricksDBRX LICENSE
Llama-3.2-3B-Instruct110310808404MetaLlama 3.2
Phi-3-Small-8k-Instruct1102110729.7775.718477MicrosoftMIT
Tulu-2-DPO-70B1099109314.996661AllenAI/UWAI2 ImpACT Low-risk
Granite-3.0-8B-Instruct109310977005IBMApache 2.0
Llama-2-70B-chat1093107211.556339616MetaLlama 2
OpenChat-3.5-01061092110265.812977OpenChatApache-2.0
Vicuna-33B109110678.6359.222950LMSYSNon-commercial
Snowflake Arctic Instruct1090107717.6167.334168SnowflakeApache 2.0
Starling-LM-7B-alpha1088108012.863.910417UC BerkeleyCC-BY-NC-4.0
Gemma-1.1-7B-it1084108464.325067GoogleGemma license
Nous-Hermes-2-Mixtral-8x7B-DPO108410793833NousResearchApache-2.0
NV-Llama2-70B-SteerLM-Chat1081102368.53638NvidiaLlama 2
pplx-70B-online107810286894Perplexity AIProprietary
DeepSeek-LLM-67B-Chat1077107971.34986DeepSeek AIDeepSeek License
OpenChat-3.51076105464.38106OpenChatApache-2.0
Granite-3.0-2B-Instruct107410887186IBMApache 2.0
OpenHermes-2.5-Mistral-7B107410585086NousResearchApache-2.0
Mistral-7B-Instruct-v0.21072107420048MistralApache-2.0
Phi-3-Mini-4K-Instruct-June-241071108270.912811MicrosoftMIT
Qwen1.5-7B-Chat10701089614866AlibabaQianwen LICENSE
GPT-3.5-Turbo-11061068109517028OpenAIProprietary
Phi-3-Mini-4k-Instruct1066108668.821089MicrosoftMIT
Llama-2-13b-chat1063105153.619732MetaLlama 2
SOLAR-10.7B-Instruct-v1.01062104766.24290Upstage AICC-BY-NC-4.0
Dolphin-2.2.1-Mistral-7B106210241713Cognitive ComputationsApache-2.0
WizardLM-13b-v1.21059102652.77175MicrosoftLlama 2
Llama-3.2-1B-Instruct105410478528MetaLlama 3.2
Step-1o-Vision-32k (highres)1180StepFunProprietary
Qwen2.5-VL-72B-Instruct1164AlibabaQwen
Pixtral-Large-24111153MistralMRL
Qwen-VL-Max-11191127AlibabaProprietary
Step-1V-32K1111StepFunProprietary
Qwen2-VL-72b-Instruct1110AlibabaQwen
Molmo-72B-09241075AI2Apache 2.0
Pixtral-12B-24091072MistralApache 2.0
Llama-3.2-90B-Vision-Instruct1069MetaLlama 3.2
InternVL2-26B1067OpenGVLabMIT
Qwen2-VL-7B-Instruct1053AliabaApache 2.0
Yi-Vision104501 AIProprietary
Llama-3.2-11B-Vision-Instruct1032MetaLlama 3.2

If you want to see more models, please help us add them.

💻 Code: The Arena Elo ratings are computed by this notebook. The MT-bench scores (single-answer grading on a scale of 10) are computed by fastchat.llm_judge. The MMLU scores are computed by InstructEval. Higher values are better for all benchmarks. Empty cells mean not available. The latest and detailed leaderboard is here.

More Statistics for Chatbot Arena

🔗 Arena Statistics

Transition from online Elo rating system to Bradley-Terry model

We adopted the Elo rating system for ranking models since the launch of the Arena. It has been useful to transform pairwise human preference to Elo ratings that serve as a predictor of winrate between models. Specifically, if player A has a rating of RA and player B a rating of RB, the probability of player A winning is

{\displaystyle E_{\mathsf {A}}={\frac {1}{1+10^{(R_{\mathsf {B}}-R_{\mathsf {A}})/400}}}~.}

ELO rating has been used to rank chess players by the international community for over 60 years. Standard Elo rating systems assume a player’s performance changes overtime. So an online algorithm is needed to capture such dynamics, meaning recent games should weigh more than older games. Specifically, after each game, a player’s rating is updated according to the difference between predicted outcome and actual outcome.

{\displaystyle R_{\mathsf {A}}'=R_{\mathsf {A}}+K\cdot (S_{\mathsf {A}}-E_{\mathsf {A}})~.}

This algorithm has two distinct features:

  1. It can be computed asynchronously by players around the world.
  2. It allows for players performance to change dynamically – it does not assume a fixed unknown value for the players rating.

This ability to adapt is determined by the parameter K which controls the magnitude of rating changes that can affect the overall result. A larger K essentially put more weight on the recent games, which may make sense for new players whose performance improves quickly. However as players become more senior and their performance “converges” then a smaller value of K is more appropriate. As a result, USCF adopted K based on the number of games and tournaments completed by the player (reference). That is, the Elo rating of a senior player changes slower than a new player.

When we launched the Arena, we noticed considerable variability in the ratings using the classic online algorithm. We tried to tune the K to be sufficiently stable while also allowing new models to move up quickly in the leaderboard. We ultimately decided to adopt a bootstrap-like technique to shuffle the data and sample Elo scores from 1000 permutations of the online plays. You can find the details in this notebook. This provided consistent stable scores and allowed us to incorporate new models quickly. This is also observed in a recent work by Cohere. However, we used the same samples to estimate confidence intervals which were therefore too wide (effectively CI’s for the original online Elo estimates).

In the context of LLM ranking, there are two important differences from the classic Elo chess ranking system. First, we have access to the entire history of all games for all models and so we don’t need a decentralized algorithm. Second, most models are static (we have access to the weights) and so we don’t expect their performance to change. However, it is worth noting that the hosted proprietary models may not be static and their behavior can change without notice. We try our best to pin specific model API versions if possible.

To improve the quality of our rankings and their confidence estimates, we are adopting another widely used rating system called the Bradley–Terry (BT) model. This model actually is the maximum likelihood (MLE) estimate of the underlying Elo model assuming a fixed but unknown pairwise win-rate. Similar to Elo rating, BT model is also based on pairwise comparison to derive ratings of players to estimate win rate between each other. The core difference between BT model vs the online Elo system is the assumption that player’s performance does not change (i.e., game order does not matter) and the computation takes place in a centralized fashion.