Chatbot Arena

Attribution LMSYS January 21, 2025

This leaderboard is based on the following benchmarks.

  • Chatbot Arena - a crowdsourced, randomized battle platform for large language models (LLMs). We use 2.5M+ user votes to compute Elo ratings.
  • MMLU (5-shot) - a test to measure a model’s multitask accuracy on 57 tasks.
  • Arena-Hard-Auto - an automatic evaluation tool for instruction-tuned LLMs.

| Vote | Blog | GitHub | Paper | Dataset | Twitter | Discord |

Best Open LM

ModelArena EloMMLULicense
DeepSeek DeepSeek-V3132088.5DeepSeek
Qwen Qwen2.5-72B-Instruct125786.8Qwen
Meta Llama-3.3-70B-Instruct125686Llama 3.3

Full Leaderboard
ModelArena EloCoding EloArena HardMMLUVotesOrganizationLicense
🥇 Gemini-2.0-Flash-Thinking-Exp-01-21138013575572GoogleProprietary
🥇 Gemini-Exp-12061374136921004GoogleProprietary
🥇 ChatGPT-4o-latest (2024-11-20)1365135234209OpenAIProprietary
🥇 Gemini-2.0-Flash-Exp1356135119823GoogleProprietary
🥇 o1-2024-12-171351136290.48124OpenAIProprietary
🥈 DeepSeek-V31320131711893DeepSeekDeepSeek
🥈 o1-mini130613569248847OpenAIProprietary
🥈 Step-2-16K-Exp130613014106StepFunProprietary
🥈 Gemini-1.5-Pro-0021303128945406GoogleProprietary
🥈 Grok-2-08-131288128266412xAIProprietary
🥈 Yi-Lightning1287130281.52895501 AIProprietary
🥈 Claude 3.5 Sonnet (20241022)1283132485.288.747647AnthropicProprietary
🥈 Qwen2.5-plus-1127128213027872AlibabaProprietary
🥉 Deepseek-v2.5-1210127912967259DeepSeekDeepSeek
🥉 Athene-v2-Chat-72B127712988521222NexusFlowNexusFlow
🥉 GLM-4-Plus1274128327775Zhipu AIProprietary
🥉 GPT-4o-mini-2024-07-181273128474.948260623OpenAIProprietary
🥉 Gemini-1.5-Flash-0021271125334631GoogleProprietary
🥉 Llama-3.1-Nemotron-70B-Instruct1269127184.97595NvidiaLlama 3.1
🥉 Llama-3.1-405B-Instruct1268127988.621520MetaLlama 3.1
🥉 Grok-2-Mini-08-131266126254988xAIProprietary
🥉 Yi-Lightning-lite126412671706201 AIProprietary
🥉 Qwen2.5-72B-Instruct125712827840070AlibabaQwen
🥉 GPT-4-Turbo-2024-04-091256126382.63102127OpenAIProprietary
🥉 Llama-3.3-70B-Instruct1256126115711MetaLlama-3.3
Mistral-Large-24071252126970.4248209MistralMistral Research
Athene-70B1250125477.620620NexusFlowCC-BY-NC-4.0
GPT-4-1106-preview12501253103733OpenAIProprietary
Llama-3.1-70B-Instruct1248125155.738658789MetaLlama 3.1
Claude 3 Opus1247125060.3686.8202735AnthropicProprietary
GPT-4-0125-preview1245124477.9697076OpenAIProprietary
Amazon Nova Pro 1.01244125713149AmazonProprietary
Llama-3.1-Tulu-3-70B124412313029Ai2Llama 3.1
Mistral-Large-24111243126010831MistralMRL
Yi-Large-preview1240124571.485165701 AIProprietary
Claude 3.5 Haiku (20241022)1238126110995AnthropicPropretary
Reka-Core-20240904123512227940Reka AIProprietary
Reka-Core-202407221230120813295Reka AIProprietary
Qwen-Plus-08281227124514631AlibabaProprietary
Gemini-1.5-Flash-0011227123249.6178.965648GoogleProprietary
Jamba-1.5-Large1221122781.29124AI21 LabsJamba Open
Deepseek-v2-API-06281220124219516DeepSeek AIDeepSeek
Gemma-2-27B-it1220121157.5172521GoogleGemma license
Amazon Nova Lite 1.01218123410969AmazonProprietary
Qwen2.5-Coder-32B-Instruct121712605731AlibabaApache 2.0
Gemma-2-9B-it-SimPO1216119710555PrincetonMIT
Command R+ (08-2024)1215118110547CohereCC-BY-NC-4.0
Deepseek-Coder-v2-07241214126662.311727DeepSeekProprietary
Yi-Large1213122063.71663401 AIProprietary
Gemini-1.5-Flash-8B-0011212120836286GoogleProprietary
Llama-3.1-Nemotron-51B-Instruct121112113897NvidiaLlama 3.1
Phi-4121012513077MicrosoftMIT
Nemotron-4-340B-Instruct1209119820609NvidiaNVIDIA Open Model
Aya-Expanse-32B1209119227096CohereCC-BY-NC-4.0
Gemini App (2024-01-24)1208117111830GoogleProprietary
GLM-4-05201207121663.8410214Zhipu AIProprietary
Llama-3-70B-Instruct1206120046.5782163792MetaLlama 3
Reka-Flash-20240904120511918129Reka AIProprietary
Gemini-1.5-Flash-8B-Exp-08271205118925358GoogleProprietary
Claude 3 Sonnet1201121346.879113032AnthropicProprietary
Reka-Flash-202407221201118713732Reka AIProprietary
Reka-Core-202405011200119083.262593Reka AIProprietary
Amazon Nova Micro 1.01197121211059AmazonProprietary
Gemma-2-9B-it1191117350349GoogleGemma license
Command R+ (04-2024)1190116433.0780862CohereCC-BY-NC-4.0
Hunyuan-Standard-256K118912272902TencentProprietary
Qwen2-72B-Instruct1187118746.8684.238887AlibabaQianwen LICENSE
GPT-4-0314118611965086.455965OpenAIProprietary
Llama-3.1-Tulu-3-8B118511773081Ai2Llama 3.1
GLM-4-01161183119155.727582Zhipu AIProprietary
Qwen-Max-04281183119025706AlibabaProprietary
Ministral-8B-2410118212015112MistralMRL
Aya-Expanse-8B118011668888CohereCC-BY-NC-4.0
Command R (08-2024)1180116210847CohereCC-BY-NC-4.0
Claude 3 Haiku1179118941.4775.2122294AnthropicProprietary
DeepSeek-Coder-V2-Instruct1178123915752DeepSeek AIDeepSeek License
Llama-3.1-8B-Instruct1176118621.347352654MetaLlama 3.1
Jamba-1.5-Mini1176118069.79269AI21 LabsJamba Open
Reka-Flash-Preview-202406111165115520421Reka AIProprietary
GPT-4-06131163116737.991642OpenAIProprietary
Qwen1.5-110B-Chat1161117580.427462AlibabaQianwen LICENSE
Mistral-Large-24021157117037.7181.264920MistralProprietary
Yi-1.5-34B-Chat1157116276.82512801 AIApache-2.0
Reka-Flash-21B-online1156114716033Reka AIProprietary
QwQ-32B-Preview115311463414AlibabaApache 2.0
Llama-3-8B-Instruct1152114620.5668.4109215MetaLlama 3
InternLM2.5-20B-chat1149115810601InternLMOther
Claude-1114911367721162AnthropicProprietary
Command R (04-2024)1149112317.0256371CohereCC-BY-NC-4.0
Mixtral-8x22b-Instruct-v0.11148115336.3677.853790MistralApache 2.0
Mistral Medium1148115331.975.335557MistralProprietary
Reka-Flash-21B1148114173.525805Reka AIProprietary
Qwen1.5-72B-Chat1147116036.1277.540639AlibabaQianwen LICENSE
Gemma-2-2b-it1142110751.341950GoogleGemma license
Granite-3.1-8B-Instruct113911732583IBMApache 2.0
Claude-2.01132113523.9978.512757AnthropicProprietary
Gemini-1.0-Pro-0011131110371.818796GoogleProprietary
Zephyr-ORPO-141b-A35b-v0.1112711244859HuggingFaceApache 2.0
Qwen1.5-32B-Chat1125114973.422768AlibabaQianwen LICENSE
Mistral-Next1124113227.3712376MistralProprietary
Phi-3-Medium-4k-Instruct1123112533.377826110MicrosoftMIT
Starling-LM-7B-beta1119112923.0116672NexusflowApache-2.0
Claude-2.11118113222.7737700AnthropicProprietary
Granite-3.1-2B-Instruct111711482604IBMApache 2.0
GPT-3.5-Turbo-06131117113524.8238946OpenAIProprietary
Mixtral-8x7B-Instruct-v0.11114111423.470.676140MistralApache 2.0
Claude-Instant-11111110973.420620AnthropicProprietary
Yi-34B-Chat1111110623.1573.51592001 AIYi License
Gemini Pro1110109217.871.86559GoogleProprietary
Qwen1.5-14B-Chat1109112667.618671AlibabaQianwen LICENSE
GPT-3.5-Turbo-01251106112423.3468863OpenAIProprietary
GPT-3.5-Turbo-03141106111518.05705645OpenAIProprietary
WizardLM-70B-v1.01106107163.78380MicrosoftLlama 2
DBRX-Instruct-Preview1103111824.6373.733731DatabricksDBRX LICENSE
Llama-3.2-3B-Instruct110310808409MetaLlama 3.2
Phi-3-Small-8k-Instruct1102110729.7775.718479MicrosoftMIT
Tulu-2-DPO-70B1099109314.996663AllenAI/UWAI2 ImpACT Low-risk
Granite-3.0-8B-Instruct109310977003IBMApache 2.0
Llama-2-70B-chat1093107211.556339634MetaLlama 2
OpenChat-3.5-01061091110265.812981OpenChatApache-2.0
Vicuna-33B109110678.6359.222951LMSYSNon-commercial
Snowflake Arctic Instruct1090107717.6167.334176SnowflakeApache 2.0
Starling-LM-7B-alpha1088108012.863.910416UC BerkeleyCC-BY-NC-4.0
Gemma-1.1-7B-it1084108412.0964.325063GoogleGemma license
Nous-Hermes-2-Mixtral-8x7B-DPO108410793834NousResearchApache-2.0
NV-Llama2-70B-SteerLM-Chat1081102368.53637NvidiaLlama 2
pplx-70B-online107810286891Perplexity AIProprietary
DeepSeek-LLM-67B-Chat1077107971.34987DeepSeek AIDeepSeek License
OpenChat-3.51076105464.38112OpenChatApache-2.0
OpenHermes-2.5-Mistral-7B107510585091NousResearchApache-2.0
Granite-3.0-2B-Instruct107410887192IBMApache 2.0
Mistral-7B-Instruct-v0.21072107412.5720056MistralApache-2.0
Phi-3-Mini-4K-Instruct-June-241071108270.912820MicrosoftMIT
Qwen1.5-7B-Chat10701089614869AlibabaQianwen LICENSE
GPT-3.5-Turbo-11061068109518.8717031OpenAIProprietary
Phi-3-Mini-4k-Instruct1066108668.821086MicrosoftMIT
Llama-2-13b-chat1063105153.619737MetaLlama 2
Dolphin-2.2.1-Mistral-7B106310261713Cognitive ComputationsApache-2.0
SOLAR-10.7B-Instruct-v1.01062104766.24288Upstage AICC-BY-NC-4.0
WizardLM-13b-v1.21059102652.77178MicrosoftLlama 2
Llama-3.2-1B-Instruct105410468535MetaLlama 3.2
Zephyr-7B-beta1053103061.411335HuggingFaceMIT
SmolLM2-1.7B-Instruct104710432371HuggingFaceApache 2.0
MPT-30B-chat1045103150.42649MosaicMLCC-BY-NC-SA-4.0
pplx-7B-online104410156336Perplexity AIProprietary
CodeLlama-34B-instruct1043104253.77515MetaLlama 2
CodeLlama-70B-instruct104210481193MetaLlama 2
Zephyr-7B-alpha104210341814HuggingFaceMIT
Vicuna-13B1042103255.819790LMSYSLlama 2
Gemma-7B-it1037104764.39176GoogleGemma license
Phi-3-Mini-128k-Instruct1037102968.121626MicrosoftMIT
Llama-2-7B-chat1037100245.814550MetaLlama 2
Qwen-14B-Chat1035105666.55070AlibabaQianwen LICENSE
falcon-180b-chat10341018681327TIIFalcon-180B TII License
Guanaco-33B103296557.62999UWNon-commercial
Gemma-1.1-2b-it1021103664.311347GoogleGemma license
StripedHyena-Nous-7B101810005273Together AIApache 2.0
OLMo-7B-instruct101610176505Allen AIApache-2.0
Mistral-7B-Instruct-v0.11008100855.49144MistralApache 2.0
Vicuna-7B100598149.87015LMSYSLlama 2
PaLM-Chat-Bison-00110049908745GoogleProprietary
Gemma-2B-it989100142.34921GoogleGemma license
Qwen1.5-4B-Chat98899056.17810AlibabaQianwen LICENSE
Koala-13B96493744.77035UC BerkeleyNon-commercial
ChatGLM3-6B9559534765TsinghuaApache-2.0
GPT4All-13B-Snoozy932910431786Nomic AINon-commercial
MPT-7B-Chat928899324013MosaicMLCC-BY-NC-SA-4.0
ChatGLM2-6B92489145.52707TsinghuaApache-2.0
RWKV-4-Raven-14B92189625.64934RWKVApache 2.0
Alpaca-13B90178948.15877StanfordNon-commercial
OpenAssistant-Pythia-12B893873276380OpenAssistantApache 2.0
ChatGLM-6B87988436.14988TsinghuaNon-commercial
FastChat-T5-3B86875947.74303LMSYSApache 2.0
StableLM-Tuned-Alpha-7B84085824.43341Stability AICC-BY-NC-SA-4.0
Dolly-V2-12B82274625.73485DatabricksMIT
LLaMA-13B799668472444MetaNon-commercial

If you want to see more models, please help us add them.

💻 Code: The Arena Elo ratings are computed by this notebook. The MT-bench scores (single-answer grading on a scale of 10) are computed by fastchat.llm_judge. The MMLU scores are computed by InstructEval. Higher values are better for all benchmarks. Empty cells mean not available. The latest and detailed leaderboard is here.

More Statistics for Chatbot Arena

🔗 Arena Statistics

Transition from online Elo rating system to Bradley-Terry model

We adopted the Elo rating system for ranking models since the launch of the Arena. It has been useful to transform pairwise human preference to Elo ratings that serve as a predictor of winrate between models. Specifically, if player A has a rating of RA and player B a rating of RB, the probability of player A winning is

{\displaystyle E_{\mathsf {A}}={\frac {1}{1+10^{(R_{\mathsf {B}}-R_{\mathsf {A}})/400}}}~.}

ELO rating has been used to rank chess players by the international community for over 60 years. Standard Elo rating systems assume a player’s performance changes overtime. So an online algorithm is needed to capture such dynamics, meaning recent games should weigh more than older games. Specifically, after each game, a player’s rating is updated according to the difference between predicted outcome and actual outcome.

{\displaystyle R_{\mathsf {A}}'=R_{\mathsf {A}}+K\cdot (S_{\mathsf {A}}-E_{\mathsf {A}})~.}

This algorithm has two distinct features:

  1. It can be computed asynchronously by players around the world.
  2. It allows for players performance to change dynamically – it does not assume a fixed unknown value for the players rating.

This ability to adapt is determined by the parameter K which controls the magnitude of rating changes that can affect the overall result. A larger K essentially put more weight on the recent games, which may make sense for new players whose performance improves quickly. However as players become more senior and their performance “converges” then a smaller value of K is more appropriate. As a result, USCF adopted K based on the number of games and tournaments completed by the player (reference). That is, the Elo rating of a senior player changes slower than a new player.

When we launched the Arena, we noticed considerable variability in the ratings using the classic online algorithm. We tried to tune the K to be sufficiently stable while also allowing new models to move up quickly in the leaderboard. We ultimately decided to adopt a bootstrap-like technique to shuffle the data and sample Elo scores from 1000 permutations of the online plays. You can find the details in this notebook. This provided consistent stable scores and allowed us to incorporate new models quickly. This is also observed in a recent work by Cohere. However, we used the same samples to estimate confidence intervals which were therefore too wide (effectively CI’s for the original online Elo estimates).

In the context of LLM ranking, there are two important differences from the classic Elo chess ranking system. First, we have access to the entire history of all games for all models and so we don’t need a decentralized algorithm. Second, most models are static (we have access to the weights) and so we don’t expect their performance to change. However, it is worth noting that the hosted proprietary models may not be static and their behavior can change without notice. We try our best to pin specific model API versions if possible.

To improve the quality of our rankings and their confidence estimates, we are adopting another widely used rating system called the Bradley–Terry (BT) model. This model actually is the maximum likelihood (MLE) estimate of the underlying Elo model assuming a fixed but unknown pairwise win-rate. Similar to Elo rating, BT model is also based on pairwise comparison to derive ratings of players to estimate win rate between each other. The core difference between BT model vs the online Elo system is the assumption that player’s performance does not change (i.e., game order does not matter) and the computation takes place in a centralized fashion.