Chatbot Arena

Attribution LMSYS β€’ June 11, 2025

This leaderboard is based on the following benchmarks.

  • Chatbot Arena - a crowdsourced, randomized battle platform for large language models (LLMs). We use 3M+ user votes to compute Elo ratings.
  • MMLU - a test to measure a model’s multitask accuracy on 57 tasks.
  • Arena-Hard-Auto - an automatic evaluation tool for instruction-tuned LLMs.

| Vote | Blog | GitHub | Paper | Dataset | Twitter | Discord |

Best Open LM

ModelArena EloMMLULicense
DeepSeek DeepSeek-V3-0324138288.5MIT
DeepSeek DeepSeek-R1137190.8MIT
Qwen Qwen3-235B-A22B136088.5Apache 2.0
Gemini Gemma-3-27B-it1355Gemma

Full Leaderboard
ModelArena EloCodingVisionArena HardMMLUVotesOrganizationLicense
πŸ₯‡ Gemini-2.5-Pro-Preview-06-0514781494135396.47343GoogleProprietary
πŸ₯‡ o3-2025-04-1614251442130015210OpenAIProprietary
πŸ₯‡ ChatGPT-4o-latest (2025-03-26)14231431130919762OpenAIProprietary
πŸ₯‡ Gemini-2.5-Flash-Preview-05-2014201431130512614GoogleProprietary
πŸ₯‡ Grok-3-Preview-02-241417142992.721879xAIProprietary
πŸ₯‡ GPT-4.5-Preview14111416125315271OpenAIProprietary
πŸ₯ˆ Gemini-2.0-Pro-Exp-02-0513941394123920120GoogleProprietary
πŸ₯ˆ Gemini-2.0-Flash-Thinking-Exp-01-2113941379127527618GoogleProprietary
πŸ₯ˆ GPT-4.1-2025-04-1413841393127613830OpenAIProprietary
πŸ₯ˆ DeepSeek-V3-03241382139785.588.516550DeepSeekMIT
πŸ₯ˆ Claude Opus 4 (20250514)13731412123213850AnthropicProprietary
πŸ₯ˆ Hunyuan-Turbos-20250416137213835944TencentProprietary
πŸ₯ˆ DeepSeek-R11371137993.290.819430DeepSeekMIT
πŸ₯ˆ Mistral Medium 31363138512003MistralProprietary
πŸ₯ˆ o1-2024-12-1713631374122992.191.829038OpenAIProprietary
πŸ₯ˆ Gemini-2.0-Flash-00113621362121834240GoogleProprietary
πŸ₯ˆ Grok-3-Mini-beta136113886636xAIProprietary
πŸ₯ˆ o4-mini-2025-04-1613611381125313554OpenAIProprietary
πŸ₯ˆ Qwen3-235B-A22B1360138595.688.510677AlibabaApache 2.0
πŸ₯ˆ Qwen2.5-Max1358136529484AlibabaProprietary
πŸ₯ˆ Gemma-3-27B-it1355133520295GoogleGemma
πŸ₯ˆ Claude Sonnet 4 (20250514)13451384122010740AnthropicProprietary
πŸ₯ˆ o3-mini-high1338137819404OpenAIProprietary
πŸ₯ˆ GPT-4.1-mini-2025-04-1413361373123612702OpenAIProprietary
πŸ₯‰ Gemma-3-12B-it133413063976GoogleGemma
πŸ₯‰ DeepSeek-V31332133585.588.522841DeepSeekDeepSeek
πŸ₯‰ Amazon-Nova-Experimental-Chat-05-14133013452595AmazonProprietary
πŸ₯‰ QwQ-32B1330134415930AlibabaApache 2.0
πŸ₯‰ Gemini-2.0-Flash-Lite13261336115726104GoogleProprietary
πŸ₯‰ Qwen-Plus-0125132413356055AlibabaProprietary
πŸ₯‰ GLM-4-Plus-0111132413056028ZhipuProprietary
πŸ₯‰ Command A (03-2025)1323133320084CohereCC-BY-NC-4.0
πŸ₯‰ o3-mini1319136232421OpenAIProprietary
πŸ₯‰ Step-2-16K-Exp131813105126StepFunProprietary
πŸ₯‰ o1-mini131713689254951OpenAIProprietary
πŸ₯‰ Gemini-1.5-Pro-00213161306122258645GoogleProprietary
πŸ₯‰ Claude 3.7 Sonnet (thinking-32k)13131347122521310AnthropicProprietary
πŸ₯‰ Hunyuan-Turbo-0110131013312510TencentProprietary
πŸ₯‰ Llama-3.3-Nemotron-Super-49B-v11310131688.3862371NvidiaNvidia
πŸ₯‰ Claude 3.7 Sonnet13061343120625983AnthropicProprietary
πŸ₯‰ Yi-Lightning130113182896801 AIProprietary
πŸ₯‰ Grok-2-08-131301129787.567084xAIProprietary
πŸ₯‰ Gemma-3n-e4b-it130112783913GoogleGemma
πŸ₯‰ GPT-4o-2024-05-1312981308120679.2188.7117747OpenAIProprietary
πŸ₯‰ Claude 3.5 Sonnet (20241022)12971341118785.288.773327AnthropicProprietary
Deepseek-v2.5-1210129313127243DeepSeekDeepSeek
Athene-v2-Chat-72B128913158526074NexusFlowNexusFlow
Gemma-3-4B-it128912624321GoogleGemma
Llama-4-Maverick-17B-128E-Instruct12871306115513750MetaLlama 4
Hunyuan-Large-2025-02-10128513083856TencentProprietary
GPT-4o-mini-2024-07-1812851298112374.948272536OpenAIProprietary
Gemini-1.5-Flash-00212851269120637021GoogleProprietary
GPT-4.1-nano-2025-04-141284130911176302OpenAIProprietary
Llama-3.1-405B-Instruct-bf161282129588.643788MetaLlama 3.1
Llama-3.1-Nemotron-70B-Instruct1282128684.97577NvidiaLlama 3.1
Llama-3.1-405B-Instruct-fp81281129169.388.663038MetaLlama 3.1
Grok-2-Mini-08-131280127755442xAIProprietary
Yi-Lightning-lite127812821706701 AIProprietary
Qwen-Max-09191277129517432AlibabaQwen
Hunyuan-Standard-2025-02-10127412854014TencentProprietary
Qwen2.5-72B-Instruct127112987841519AlibabaQwen
GPT-4-Turbo-2024-04-0912701278115182.63102133OpenAIProprietary
Llama-3.3-70B-Instruct1270127244800MetaLlama-3.3
Athene-70B1264126877.620580NexusFlowCC-BY-NC-4.0
Mistral-Small-3.1-24B-Instruct-2503126312822484MistralApache 2.0
GPT-4-1106-preview12631268103748OpenAIProprietary
Mistral-Large-24111262128170.4229633MistralMRL
Llama-3.1-70B-Instruct1261126655.738658637MetaLlama 3.1
Claude 3 Opus12611265107660.3686.8202641AnthropicProprietary
Amazon Nova Pro 1.012581278104426371AmazonProprietary
GPT-4-0125-preview1258125877.9697079OpenAIProprietary
Llama-3.1-Tulu-3-70B125812483010Ai2Llama 3.1
Claude 3.5 Haiku (20241022)12511283115744893AnthropicPropretary
Reka-Core-20240904124912367948Reka AIProprietary
Gemini-1.5-Flash-00112401247107249.6178.965661GoogleProprietary
Jamba-1.5-Large1235124281.29125AI21 LabsJamba Open
Deepseek-v2-API-06281233125719508DeepSeek AIDeepSeek
Gemma-2-27B-it1233122457.5179538GoogleGemma license
Qwen2.5-Coder-32B-Instruct123112765730AlibabaApache 2.0
Mistral-Small-24B-Instruct-25011231124715321MistralApache 2.0
Amazon Nova Lite 1.012301250106120646AmazonProprietary
Gemma-2-9B-it-SimPO1230121110548PrincetonMIT
Command R+ (08-2024)1229119610535CohereCC-BY-NC-4.0
Deepseek-Coder-v2-07241228128262.311725DeepSeekProprietary
Gemini-1.5-Flash-8B-00112261223110737697GoogleProprietary
Llama-3.1-Nemotron-51B-Instruct122512263889NvidiaLlama 3.1
Nemotron-4-340B-Instruct1223121320608NvidiaNvidia
Aya-Expanse-32B1223120828768CohereCC-BY-NC-4.0
GLM-4-05201220123163.8410221Zhipu AIProprietary
Llama-3-70B-Instruct1220121546.5782163629MetaLlama 3
Phi-41219123725213MicrosoftMIT
OLMo-2-0325-32B-Instruct121912113460Allen AIApache-2.0
Reka-Flash-20240904121912068132Reka AIProprietary
Claude 3 Sonnet12141228104846.879113067AnthropicProprietary
Amazon Nova Micro 1.01211122520654AmazonProprietary
Gemma-2-9B-it1206118857197GoogleGemma license
Hunyuan-Standard-256K120212422901TencentProprietary
Qwen2-72B-Instruct1201120246.8684.238872AlibabaQianwen LICENSE
GPT-4-0314120012105086.455962OpenAIProprietary
Llama-3.1-Tulu-3-8B119911943074Ai2Llama 3.1
Ministral-8B-2410119612165111MistralMRL
Claude 3 Haiku11931204100041.4775.2122309AnthropicProprietary
Aya-Expanse-8B1193118010391CohereCC-BY-NC-4.0
Command R (08-2024)1193117610851CohereCC-BY-NC-4.0
DeepSeek-Coder-V2-Instruct1192125415753DeepSeek AIDeepSeek License
Llama-3.1-8B-Instruct1189120121.347352578MetaLlama 3.1
Jamba-1.5-Mini1189119669.79274AI21 LabsJamba Open
GPT-4-06131177118237.991614OpenAIProprietary
Qwen1.5-110B-Chat1175119080.427430AlibabaQianwen LICENSE
Yi-1.5-34B-Chat1171117776.82513501 AIApache-2.0
Llama-3-8B-Instruct1165116120.5668.4109056MetaLlama 3
InternLM2.5-20B-chat1162117310599InternLMOther
Claude-1116211517721149AnthropicProprietary
Qwen1.5-72B-Chat1161117536.1277.540658AlibabaQianwen LICENSE
Mixtral-8x22b-Instruct-v0.11161116836.3677.853751MistralApache 2.0
Mistral Medium1161116831.975.335556MistralProprietary
Gemma-2-2b-it1157112251.348892GoogleGemma license
Granite-3.1-8B-Instruct115611883289IBMApache 2.0
Claude-2.01145115023.9978.512763AnthropicProprietary
Gemini-1.0-Pro-0011145111871.818800GoogleProprietary
Zephyr-ORPO-141b-A35b-v0.1114111394854HuggingFaceApache 2.0
Qwen1.5-32B-Chat1139116473.422765AlibabaQianwen LICENSE
Phi-3-Medium-4k-Instruct1136114033.377826105MicrosoftMIT
Granite-3.1-2B-Instruct113311633380IBMApache 2.0
Claude-2.11132114722.7737699AnthropicProprietary
Starling-LM-7B-beta1132114423.0116676NexusflowApache-2.0
GPT-3.5-Turbo-06131130115024.8238955OpenAIProprietary
Mixtral-8x7B-Instruct-v0.11128112923.470.676126MistralApache 2.0
Claude-Instant-11125112473.420631AnthropicProprietary
Yi-34B-Chat1125112123.1573.51591701 AIYi License
Qwen1.5-14B-Chat1122114167.618687AlibabaQianwen LICENSE
GPT-3.5-Turbo-03141120113018.05705640OpenAIProprietary
WizardLM-70B-v1.01120108663.78383MicrosoftLlama 2
GPT-3.5-Turbo-01251119113923.3468867OpenAIProprietary
DBRX-Instruct-Preview1117113324.6373.733743DatabricksDBRX LICENSE
Phi-3-Small-8k-Instruct1116112229.7775.718476MicrosoftMIT
Llama-3.2-3B-Instruct111610958390MetaLlama 3.2
Tulu-2-DPO-70B1113110814.996658AllenAI/UWAI2 ImpACT Low-risk
Granite-3.0-8B-Instruct110711127002IBMApache 2.0
Llama-2-70B-chat1106108711.556339595MetaLlama 2
OpenChat-3.5-01061105111765.812990OpenChatApache-2.0
Vicuna-33B110410828.6359.222936LMSYSNon-commercial
Snowflake Arctic Instruct1103109217.6167.334173SnowflakeApache 2.0
Starling-LM-7B-alpha1102109512.863.910415UC BerkeleyCC-BY-NC-4.0
Nous-Hermes-2-Mixtral-8x7B-DPO109810943836NousResearchApache-2.0
Gemma-1.1-7B-it1097109912.0964.325070GoogleGemma license
NV-Llama2-70B-SteerLM-Chat1094103868.53636NvidiaLlama 2
pplx-70B-online109110436898Perplexity AIProprietary
DeepSeek-LLM-67B-Chat1090109471.34988DeepSeek AIDeepSeek License
OpenChat-3.51090106964.38106OpenChatApache-2.0
OpenHermes-2.5-Mistral-7B108810735088NousResearchApache-2.0
Granite-3.0-2B-Instruct108711037191IBMApache 2.0
Mistral-7B-Instruct-v0.21086108912.5720067MistralApache-2.0
Phi-3-Mini-4K-Instruct-June-241084109770.912808MicrosoftMIT
Qwen1.5-7B-Chat10831104614872AlibabaQianwen LICENSE
GPT-3.5-Turbo-11061081111018.8717036OpenAIProprietary
Phi-3-Mini-4k-Instruct1080110168.821097MicrosoftMIT
Llama-2-13b-chat1077106653.619722MetaLlama 2
SOLAR-10.7B-Instruct-v1.01076106266.24286Upstage AICC-BY-NC-4.0
Dolphin-2.2.1-Mistral-7B107610401714Cognitive ComputationsApache-2.0
WizardLM-13b-v1.21072104152.77176MicrosoftLlama 2
Llama-3.2-1B-Instruct106710618523MetaLlama 3.2
Qwen2.5-VL-32B-Instruct12121505AlibabaApache 2.0
Step-1o-Vision-32k (highres)11862891StepFunProprietary
Qwen2.5-VL-72B-Instruct11693884AlibabaQwen
Pixtral-Large-241111535546MistralMRL
Llama-4-Scout-17B-16E-Instruct11501029MetaLlama
Qwen-VL-Max-111911281449AlibabaProprietary
Qwen2-VL-72b-Instruct11116028AlibabaQwen
Step-1V-32K11111553StepFunProprietary
Molmo-72B-092410763092AI2Apache 2.0
Pixtral-12B-240910727623MistralApache 2.0
Llama-3.2-90B-Vision-Instruct10708829MetaLlama 3.2
InternVL2-26B10675265OpenGVLabMIT
Hunyuan-Standard-Vision-2024-12-311064811TencentProprietary
Aya-Vision-32B1058849CohereCC-BY-NC-4.0
Qwen2-VL-7B-Instruct10545854AliabaApache 2.0
Yi-Vision1045123701 AIProprietary
Llama-3.2-11B-Vision-Instruct10324893MetaLlama 3.2

If you want to see more models, please help us add them.

πŸ’» Code: The Arena Elo ratings are computed by this notebook. The MT-bench scores (single-answer grading on a scale of 10) are computed by fastchat.llm_judge. The MMLU scores are computed by InstructEval. Higher values are better for all benchmarks. Empty cells mean not available. The latest and detailed leaderboard is here.

More Statistics for Chatbot Arena

πŸ”— Arena Statistics

Transition from online Elo rating system to Bradley-Terry model

We adopted the Elo rating system for ranking models since the launch of the Arena. It has been useful to transform pairwise human preference to Elo ratings that serve as a predictor of winrate between models. Specifically, if player A has a rating of RA and player B a rating of RB, the probability of player A winning is

{\displaystyle E_{\mathsf {A}}={\frac {1}{1+10^{(R_{\mathsf {B}}-R_{\mathsf {A}})/400}}}~.}

ELO rating has been used to rank chess players by the international community for over 60 years. Standard Elo rating systems assume a player’s performance changes overtime. So an online algorithm is needed to capture such dynamics, meaning recent games should weigh more than older games. Specifically, after each game, a player’s rating is updated according to the difference between predicted outcome and actual outcome.

{\displaystyle R_{\mathsf {A}}'=R_{\mathsf {A}}+K\cdot (S_{\mathsf {A}}-E_{\mathsf {A}})~.}

This algorithm has two distinct features:

  1. It can be computed asynchronously by players around the world.
  2. It allows for players performance to change dynamically – it does not assume a fixed unknown value for the players rating.

This ability to adapt is determined by the parameter K which controls the magnitude of rating changes that can affect the overall result. A larger K essentially put more weight on the recent games, which may make sense for new players whose performance improves quickly. However as players become more senior and their performance β€œconverges” then a smaller value of K is more appropriate. As a result, USCF adopted K based on the number of games and tournaments completed by the player (reference). That is, the Elo rating of a senior player changes slower than a new player.

When we launched the Arena, we noticed considerable variability in the ratings using the classic online algorithm. We tried to tune the K to be sufficiently stable while also allowing new models to move up quickly in the leaderboard. We ultimately decided to adopt a bootstrap-like technique to shuffle the data and sample Elo scores from 1000 permutations of the online plays. You can find the details in this notebook. This provided consistent stable scores and allowed us to incorporate new models quickly. This is also observed in a recent work by Cohere. However, we used the same samples to estimate confidence intervals which were therefore too wide (effectively CI’s for the original online Elo estimates).

In the context of LLM ranking, there are two important differences from the classic Elo chess ranking system. First, we have access to the entire history of all games for all models and so we don’t need a decentralized algorithm. Second, most models are static (we have access to the weights) and so we don’t expect their performance to change. However, it is worth noting that the hosted proprietary models may not be static and their behavior can change without notice. We try our best to pin specific model API versions if possible.

To improve the quality of our rankings and their confidence estimates, we are adopting another widely used rating system called the Bradley–Terry (BT) model. This model actually is the maximum likelihood (MLE) estimate of the underlying Elo model assuming a fixed but unknown pairwise win-rate. Similar to Elo rating, BT model is also based on pairwise comparison to derive ratings of players to estimate win rate between each other. The core difference between BT model vs the online Elo system is the assumption that player’s performance does not change (i.e., game order does not matter) and the computation takes place in a centralized fashion.