This leaderboard is based on the following three benchmarks.
- Chatbot Arena - a crowdsourced, randomized battle platform for large language models (LLMs). We use 2.2M+ user votes to compute Elo ratings.
- MT-Bench - a set of challenging multi-turn questions. We use GPT-4 to grade model responses.
- MMLU (5-shot) - a test to measure a model’s multitask accuracy on 57 tasks.
| Vote | Blog | GitHub | Paper | Dataset | Twitter | Discord |
Best for Model Size Class
Model | ▤ Size | Arena Elo | MMLU | License |
---|---|---|---|---|
ChatGPT-4o-latest | 72B + | 1340 | 88.7 | Proprietary |
o1-preview | 72B + | 1333 | 92.3 | Proprietary |
Llama-3.1-Nemotron-70B-Instruct | 32B - 72B | 1269 | 86 | Llama 3.1 |
Qwen2.5-32B-Instruct | 16B - 32B | 83.9 | Qwen | |
Qwen2.5-14B-Instruct | 8B - 16B | 80 | Qwen | |
Llama-3.1-8B-Instruct | 4B - 8B | 1175 | 73 | Llama 3.1 |
Llama-3.2-3B-Instruct | 1B - 4B | 1103 | 63.4 | Llama 3.2 |
Full Leaderboard
Model | 🏆 Arena Elo | Coding Elo | MT-bench | MMLU | Votes | Organization | License |
---|---|---|---|---|---|---|---|
🥇 Gemini-Exp-1114 | 1344 | 1329 | 6446 | Proprietary | |||
🥇 ChatGPT-4o-latest (2024-09-03) | 1340 | 1339 | 42225 | OpenAI | Proprietary | ||
🥇 o1-preview | 1333 | 1354 | 26268 | OpenAI | Proprietary | ||
🥈 o1-mini | 1308 | 1364 | 28953 | OpenAI | Proprietary | ||
🥈 Gemini-1.5-Pro-002 | 1301 | 1290 | 23856 | Proprietary | |||
🥈 Grok-2-08-13 | 1290 | 1287 | 47908 | xAI | Proprietary | ||
🥈 Yi-Lightning | 1287 | 1303 | 27114 | 01 AI | Proprietary | ||
🥈 Claude 3.5 Sonnet (2024-10-22) | 1283 | 1321 | 88.7 | 26047 | Anthropic | Proprietary | |
🥉 GLM-4-Plus | 1275 | 1285 | 25601 | Zhipu AI | Proprietary | ||
🥉 GPT-4o-mini-2024-07-18 | 1272 | 1284 | 82 | 48407 | OpenAI | Proprietary | |
🥉 Gemini-1.5-Flash-002 | 1272 | 1254 | 18112 | Proprietary | |||
🥉 Llama-3.1-Nemotron-70B-Instruct | 1269 | 1273 | 7263 | Nvidia | Llama 3.1 | ||
🥉 Llama-3.1-405B-Instruct | 1267 | 1278 | 88.6 | 48804 | Meta | Llama 3.1 | |
🥉 Grok-2-Mini-08-13 | 1267 | 1262 | 39214 | xAI | Proprietary | ||
🥉 Yi-Lightning-lite | 1264 | 1267 | 17284 | 01 AI | Proprietary | ||
🥉 Qwen-Max-0919 | 1263 | 1280 | 17642 | Alibaba | Proprietary | ||
🥉 Qwen2.5-72B-Instruct | 1259 | 1283 | 23112 | Alibaba | Qwen | ||
🥉 Deepseek-v2.5 | 1258 | 1288 | 22918 | DeepSeek | DeepSeek | ||
🥉 GPT-4-Turbo-2024-04-09 | 1256 | 1263 | 101865 | OpenAI | Proprietary | ||
Mistral-Large-2407 | 1251 | 1269 | 45046 | Mistral | Mistral Research | ||
Athene-70B | 1250 | 1254 | 20697 | NexusFlow | CC-BY-NC-4.0 | ||
GPT-4-1106-preview | 1250 | 1253 | 9.32 | 103870 | OpenAI | Proprietary | |
Claude 3 Opus | 1248 | 1250 | 86.8 | 183545 | Anthropic | Proprietary | |
Llama-3.1-70B-Instruct | 1247 | 1251 | 86 | 44687 | Meta | Llama 3.1 | |
GPT-4-0125-preview | 1245 | 1244 | 97202 | OpenAI | Proprietary | ||
Yi-Large-preview | 1240 | 1245 | 51701 | 01 AI | Proprietary | ||
Reka-Core-20240722 | 1230 | 1209 | 13326 | Reka AI | Proprietary | ||
Qwen-Plus-0828 | 1227 | 1246 | 14739 | Alibaba | Proprietary | ||
Gemini-1.5-Flash-001 | 1227 | 1232 | 78.9 | 65794 | Proprietary | ||
Jamba-1.5-Large | 1221 | 1228 | 81.2 | 9186 | AI21 Labs | Jamba Open | |
Deepseek-v2-API-0628 | 1219 | 1242 | 19605 | DeepSeek AI | DeepSeek | ||
Gemma-2-27B-it | 1219 | 1209 | 54961 | Gemma license | |||
Gemma-2-9B-it-SimPO | 1216 | 1197 | 10613 | Princeton | MIT | ||
Command R+ (08-2024) | 1215 | 1182 | 10608 | Cohere | CC-BY-NC-4.0 | ||
Deepseek-Coder-v2-0724 | 1214 | 1267 | 11772 | DeepSeek | Proprietary | ||
Yi-Large | 1213 | 1220 | 16672 | 01 AI | Proprietary | ||
Llama-3.1-Nemotron-51B-Instruct | 1212 | 1211 | 3943 | Nvidia | Llama 3.1 | ||
Gemini-1.5-Flash-8B-001 | 1211 | 1204 | 19267 | Proprietary | |||
Nemotron-4-340B-Instruct | 1209 | 1198 | 20641 | Nvidia | NVIDIA Open Model | ||
Gemini App (2024-01-24) | 1208 | 1171 | 11820 | Proprietary | |||
GLM-4-0520 | 1206 | 1216 | 10228 | Zhipu AI | Proprietary | ||
Llama-3-70B-Instruct | 1206 | 1200 | 82 | 163858 | Meta | Llama 3 | |
Gemini-1.5-Flash-8B-Exp-0827 | 1205 | 1190 | 25471 | Proprietary | |||
Claude 3 Sonnet | 1201 | 1213 | 79 | 113045 | Anthropic | Proprietary | |
Reka-Flash-20240722 | 1201 | 1188 | 13774 | Reka AI | Proprietary | ||
Reka-Core-20240501 | 1200 | 1190 | 83.2 | 62609 | Reka AI | Proprietary | |
Gemma-2-9B-it | 1190 | 1170 | 39510 | Gemma license | |||
Command R+ (04-2024) | 1190 | 1164 | 80879 | Cohere | CC-BY-NC-4.0 | ||
Hunyuan-Standard-256K | 1188 | 1226 | 2860 | Tencent | Proprietary | ||
Qwen2-72B-Instruct | 1187 | 1187 | 9.12 | 84.2 | 38980 | Alibaba | Qianwen LICENSE |
GPT-4-0314 | 1186 | 1195 | 8.96 | 86.4 | 55966 | OpenAI | Proprietary |
GLM-4-0116 | 1183 | 1191 | 7582 | Zhipu AI | Proprietary | ||
Qwen-Max-0428 | 1183 | 1190 | 25703 | Alibaba | Proprietary | ||
Command R (08-2024) | 1180 | 1162 | 10924 | Cohere | CC-BY-NC-4.0 | ||
Ministral-8B-2410 | 1179 | 1190 | 2333 | Mistral | MRL | ||
Claude 3 Haiku | 1179 | 1189 | 75.2 | 122422 | Anthropic | Proprietary | |
DeepSeek-Coder-V2-Instruct | 1178 | 1239 | 15796 | DeepSeek AI | DeepSeek License | ||
Jamba-1.5-Mini | 1176 | 1182 | 69.7 | 9296 | AI21 Labs | Jamba Open | |
Llama-3.1-8B-Instruct | 1175 | 1185 | 73 | 42983 | Meta | Llama 3.1 | |
Reka-Flash-Preview-20240611 | 1165 | 1155 | 20466 | Reka AI | Proprietary | ||
GPT-4-0613 | 1163 | 1167 | 9.18 | 91646 | OpenAI | Proprietary | |
Qwen1.5-110B-Chat | 1161 | 1175 | 8.88 | 80.4 | 27472 | Alibaba | Qianwen LICENSE |
Mistral-Large-2402 | 1157 | 1170 | 81.2 | 64909 | Mistral | Proprietary | |
Yi-1.5-34B-Chat | 1157 | 1162 | 76.8 | 25150 | 01 AI | Apache-2.0 | |
Reka-Flash-21B-online | 1156 | 1147 | 16023 | Reka AI | Proprietary | ||
Llama-3-8B-Instruct | 1152 | 1146 | 68.4 | 109312 | Meta | Llama 3 | |
InternLM2.5-20B-chat | 1149 | 1159 | 10709 | InternLM | Other | ||
Claude-1 | 1149 | 1136 | 7.9 | 77 | 21149 | Anthropic | Proprietary |
Command R (04-2024) | 1149 | 1123 | 56400 | Cohere | CC-BY-NC-4.0 | ||
Mixtral-8x22b-Instruct-v0.1 | 1148 | 1153 | 77.8 | 53814 | Mistral | Apache 2.0 | |
Mistral Medium | 1148 | 1152 | 8.61 | 75.3 | 35537 | Mistral | Proprietary |
Reka-Flash-21B | 1148 | 1141 | 73.5 | 25802 | Reka AI | Proprietary | |
Qwen1.5-72B-Chat | 1147 | 1160 | 8.61 | 77.5 | 40636 | Alibaba | Qianwen LICENSE |
Gemma-2-2b-it | 1140 | 1102 | 51.3 | 31041 | Gemma license | ||
Claude-2.0 | 1132 | 1135 | 8.06 | 78.5 | 12761 | Anthropic | Proprietary |
Gemini-1.0-Pro-001 | 1131 | 1103 | 71.8 | 18787 | Proprietary | ||
Zephyr-ORPO-141b-A35b-v0.1 | 1127 | 1124 | 4849 | HuggingFace | Apache 2.0 | ||
Qwen1.5-32B-Chat | 1126 | 1149 | 8.3 | 73.4 | 22753 | Alibaba | Qianwen LICENSE |
Mistral-Next | 1124 | 1132 | 12376 | Mistral | Proprietary | ||
Phi-3-Medium-4k-Instruct | 1123 | 1125 | 78 | 26143 | Microsoft | MIT | |
Starling-LM-7B-beta | 1119 | 1129 | 8.12 | 16665 | Nexusflow | Apache-2.0 | |
Claude-2.1 | 1118 | 1132 | 8.18 | 37683 | Anthropic | Proprietary | |
GPT-3.5-Turbo-0613 | 1117 | 1135 | 8.39 | 38947 | OpenAI | Proprietary | |
Mixtral-8x7B-Instruct-v0.1 | 1114 | 1114 | 8.3 | 70.6 | 76142 | Mistral | Apache 2.0 |
Claude-Instant-1 | 1111 | 1109 | 7.85 | 73.4 | 20617 | Anthropic | Proprietary |
Yi-34B-Chat | 1111 | 1106 | 73.5 | 15919 | 01 AI | Yi License | |
Gemini Pro | 1111 | 1091 | 71.8 | 6561 | Proprietary | ||
Qwen1.5-14B-Chat | 1109 | 1126 | 7.91 | 67.6 | 18666 | Alibaba | Qianwen LICENSE |
GPT-3.5-Turbo-0125 | 1106 | 1124 | 68876 | OpenAI | Proprietary | ||
GPT-3.5-Turbo-0314 | 1106 | 1115 | 7.94 | 70 | 5647 | OpenAI | Proprietary |
WizardLM-70B-v1.0 | 1106 | 1071 | 7.71 | 63.7 | 8382 | Microsoft | Llama 2 |
DBRX-Instruct-Preview | 1103 | 1118 | 73.7 | 33718 | Databricks | DBRX LICENSE | |
Llama-3.2-3B-Instruct | 1103 | 1081 | 8454 | Meta | Llama 3.2 | ||
Phi-3-Small-8k-Instruct | 1102 | 1107 | 75.7 | 18499 | Microsoft | MIT | |
Tulu-2-DPO-70B | 1099 | 1093 | 7.89 | 6662 | AllenAI/UW | AI2 ImpACT Low-risk | |
Llama-2-70B-chat | 1093 | 1072 | 6.86 | 63 | 39617 | Meta | Llama 2 |
OpenChat-3.5-0106 | 1092 | 1102 | 7.8 | 65.8 | 12971 | OpenChat | Apache-2.0 |
Vicuna-33B | 1091 | 1067 | 7.12 | 59.2 | 22941 | LMSYS | Non-commercial |
Snowflake Arctic Instruct | 1090 | 1077 | 67.3 | 34163 | Snowflake | Apache 2.0 | |
Starling-LM-7B-alpha | 1088 | 1080 | 8.09 | 63.9 | 10414 | UC Berkeley | CC-BY-NC-4.0 |
Gemma-1.1-7B-it | 1084 | 1084 | 64.3 | 25074 | Gemma license | ||
Nous-Hermes-2-Mixtral-8x7B-DPO | 1084 | 1079 | 3837 | NousResearch | Apache-2.0 | ||
NV-Llama2-70B-SteerLM-Chat | 1081 | 1023 | 7.54 | 68.5 | 3638 | Nvidia | Llama 2 |
pplx-70B-online | 1078 | 1028 | 6892 | Perplexity AI | Proprietary | ||
DeepSeek-LLM-67B-Chat | 1077 | 1079 | 71.3 | 4984 | DeepSeek AI | DeepSeek License | |
OpenChat-3.5 | 1076 | 1054 | 7.81 | 64.3 | 8110 | OpenChat | Apache-2.0 |
OpenHermes-2.5-Mistral-7B | 1074 | 1058 | 5090 | NousResearch | Apache-2.0 | ||
Mistral-7B-Instruct-v0.2 | 1072 | 1074 | 7.6 | 20060 | Mistral | Apache-2.0 | |
Phi-3-Mini-4K-Instruct-June-24 | 1071 | 1083 | 70.9 | 12874 | Microsoft | MIT | |
Qwen1.5-7B-Chat | 1070 | 1089 | 7.6 | 61 | 4862 | Alibaba | Qianwen LICENSE |
GPT-3.5-Turbo-1106 | 1068 | 1095 | 8.32 | 17026 | OpenAI | Proprietary | |
Phi-3-Mini-4k-Instruct | 1066 | 1086 | 68.8 | 21118 | Microsoft | MIT | |
Llama-2-13b-chat | 1063 | 1051 | 6.65 | 53.6 | 19730 | Meta | Llama 2 |
SOLAR-10.7B-Instruct-v1.0 | 1062 | 1046 | 7.58 | 66.2 | 4288 | Upstage AI | CC-BY-NC-4.0 |
Dolphin-2.2.1-Mistral-7B | 1062 | 1024 | 1713 | Cognitive Computations | Apache-2.0 | ||
WizardLM-13b-v1.2 | 1059 | 1026 | 7.2 | 52.7 | 7183 | Microsoft | Llama 2 |
Llama-3.2-1B-Instruct | 1053 | 1047 | 8568 | Meta | Llama 3.2 | ||
Zephyr-7B-beta | 1053 | 1030 | 7.34 | 61.4 | 11325 | HuggingFace | MIT |
MPT-30B-chat | 1046 | 1031 | 6.39 | 50.4 | 2649 | MosaicML | CC-BY-NC-SA-4.0 |
pplx-7B-online | 1045 | 1015 | 6334 | Perplexity AI | Proprietary | ||
CodeLlama-34B-instruct | 1043 | 1042 | 53.7 | 7509 | Meta | Llama 2 | |
Vicuna-13B | 1042 | 1032 | 6.57 | 55.8 | 19782 | LMSYS | Llama 2 |
Zephyr-7B-alpha | 1041 | 1034 | 6.88 | 1813 | HuggingFace | MIT | |
CodeLlama-70B-instruct | 1040 | 1047 | 1190 | Meta | Llama 2 | ||
Gemma-7B-it | 1037 | 1047 | 64.3 | 9177 | Gemma license | ||
Phi-3-Mini-128k-Instruct | 1037 | 1029 | 68.1 | 21616 | Microsoft | MIT | |
Llama-2-7B-chat | 1037 | 1002 | 6.27 | 45.8 | 14551 | Meta | Llama 2 |
Qwen-14B-Chat | 1035 | 1056 | 6.96 | 66.5 | 5069 | Alibaba | Qianwen LICENSE |
falcon-180b-chat | 1034 | 1017 | 68 | 1326 | TII | Falcon-180B TII License | |
Guanaco-33B | 1033 | 965 | 6.53 | 57.6 | 2997 | UW | Non-commercial |
Gemma-1.1-2b-it | 1021 | 1036 | 64.3 | 11349 | Gemma license | ||
StripedHyena-Nous-7B | 1018 | 999 | 5272 | Together AI | Apache 2.0 | ||
OLMo-7B-instruct | 1016 | 1017 | 6495 | Allen AI | Apache-2.0 | ||
Mistral-7B-Instruct-v0.1 | 1008 | 1008 | 6.84 | 55.4 | 9139 | Mistral | Apache 2.0 |
Vicuna-7B | 1005 | 981 | 6.17 | 49.8 | 7017 | LMSYS | Llama 2 |
PaLM-Chat-Bison-001 | 1004 | 990 | 6.4 | 8743 | Proprietary | ||
Gemma-2B-it | 990 | 1000 | 42.3 | 4913 | Gemma license | ||
Qwen1.5-4B-Chat | 988 | 990 | 56.1 | 7812 | Alibaba | Qianwen LICENSE | |
Koala-13B | 964 | 937 | 5.35 | 44.7 | 7033 | UC Berkeley | Non-commercial |
ChatGLM3-6B | 955 | 953 | 4765 | Tsinghua | Apache-2.0 | ||
GPT4All-13B-Snoozy | 932 | 910 | 5.41 | 43 | 1786 | Nomic AI | Non-commercial |
MPT-7B-Chat | 928 | 900 | 5.42 | 32 | 4012 | MosaicML | CC-BY-NC-SA-4.0 |
ChatGLM2-6B | 924 | 892 | 4.96 | 45.5 | 2708 | Tsinghua | Apache-2.0 |
RWKV-4-Raven-14B | 922 | 896 | 3.98 | 25.6 | 4935 | RWKV | Apache 2.0 |
Alpaca-13B | 902 | 789 | 4.53 | 48.1 | 5872 | Stanford | Non-commercial |
OpenAssistant-Pythia-12B | 893 | 873 | 4.32 | 27 | 6382 | OpenAssistant | Apache 2.0 |
ChatGLM-6B | 879 | 884 | 4.5 | 36.1 | 4993 | Tsinghua | Non-commercial |
FastChat-T5-3B | 868 | 759 | 3.04 | 47.7 | 4300 | LMSYS | Apache 2.0 |
StableLM-Tuned-Alpha-7B | 840 | 858 | 2.75 | 24.4 | 3338 | Stability AI | CC-BY-NC-SA-4.0 |
Dolly-V2-12B | 822 | 746 | 3.28 | 25.7 | 3485 | Databricks | MIT |
LLaMA-13B | 799 | 669 | 2.61 | 47 | 2445 | Meta | Non-commercial |
If you want to see more models, please help us add them.
💻 Code: The Arena Elo ratings are computed by this notebook. The MT-bench scores (single-answer grading on a scale of 10) are computed by fastchat.llm_judge. The MMLU scores are computed by InstructEval. Higher values are better for all benchmarks. Empty cells mean not available. The latest and detailed leaderboard is here.
More Statistics for Chatbot Arena
🔗 Arena Statistics
Transition from online Elo rating system to Bradley-Terry model
We adopted the Elo rating system for ranking models since the launch of the Arena. It has been useful to transform pairwise human preference to Elo ratings that serve as a predictor of winrate between models. Specifically, if player A has a rating of RA and player B a rating of RB, the probability of player A winning is
ELO rating has been used to rank chess players by the international community for over 60 years. Standard Elo rating systems assume a player’s performance changes overtime. So an online algorithm is needed to capture such dynamics, meaning recent games should weigh more than older games. Specifically, after each game, a player’s rating is updated according to the difference between predicted outcome and actual outcome.
This algorithm has two distinct features:
- It can be computed asynchronously by players around the world.
- It allows for players performance to change dynamically – it does not assume a fixed unknown value for the players rating.
This ability to adapt is determined by the parameter K which controls the magnitude of rating changes that can affect the overall result. A larger K essentially put more weight on the recent games, which may make sense for new players whose performance improves quickly. However as players become more senior and their performance “converges” then a smaller value of K is more appropriate. As a result, USCF adopted K based on the number of games and tournaments completed by the player (reference). That is, the Elo rating of a senior player changes slower than a new player.
When we launched the Arena, we noticed considerable variability in the ratings using the classic online algorithm. We tried to tune the K to be sufficiently stable while also allowing new models to move up quickly in the leaderboard. We ultimately decided to adopt a bootstrap-like technique to shuffle the data and sample Elo scores from 1000 permutations of the online plays. You can find the details in this notebook. This provided consistent stable scores and allowed us to incorporate new models quickly. This is also observed in a recent work by Cohere. However, we used the same samples to estimate confidence intervals which were therefore too wide (effectively CI’s for the original online Elo estimates).
In the context of LLM ranking, there are two important differences from the classic Elo chess ranking system. First, we have access to the entire history of all games for all models and so we don’t need a decentralized algorithm. Second, most models are static (we have access to the weights) and so we don’t expect their performance to change. However, it is worth noting that the hosted proprietary models may not be static and their behavior can change without notice. We try our best to pin specific model API versions if possible.
To improve the quality of our rankings and their confidence estimates, we are adopting another widely used rating system called the Bradley–Terry (BT) model. This model actually is the maximum likelihood (MLE) estimate of the underlying Elo model assuming a fixed but unknown pairwise win-rate. Similar to Elo rating, BT model is also based on pairwise comparison to derive ratings of players to estimate win rate between each other. The core difference between BT model vs the online Elo system is the assumption that player’s performance does not change (i.e., game order does not matter) and the computation takes place in a centralized fashion.
MT-Bench Effectively Distinguishes Among Chatbots
We observe a clear distinction among chatbots of varying abilities, with scores showing a high correlation with the Chatbot Arena Elo rating. In particular, MT-Bench reveals noticeable performance gaps between GPT-4 and GPT-3.5, and between open and proprietary models.
To delve deeper into the distinguishing factors among chatbots, we select a few representative chatbots and break down their performance per category. GPT-4 shows superior performance in Coding and Reasoning compared to GPT-3.5.
Figure 5: The comparison of 6 representative LLMs regarding their abilities in 8 categories: Writing, Roleplay, Reasoning, Math, Coding, Extraction, STEM, Humanities