Chatbot Arena

Attribution LMSYS β€’ July 1, 2025

This leaderboard is based on the following benchmarks.

  • Chatbot Arena - a crowdsourced, randomized battle platform for large language models (LLMs). We use 3.1M+ user votes to compute Elo ratings.
  • MMLU - a test to measure a model’s multitask accuracy on 57 tasks.
  • Arena-Hard-Auto - an automatic evaluation tool for instruction-tuned LLMs.

| Vote | Blog | GitHub | Paper | Dataset | Twitter | Discord |

OpenLM

ModelArena EloMMLULicense
DeepSeek DeepSeek-R1-0528142490.8MIT
Qwen Qwen3-235B-A22B-no-thinking138988.5Apache 2.0
DeepSeek DeepSeek-V3-0324138488.5MIT
Minimax Minimax-M11374Apache 2.0
Qwen Qwen3-235B-A22B136788.5Apache 2.0
Gemini Gemma-3-27B-it1361Gemma
Gemini Gemma-3n-e4b-it1309Gemma

Full Leaderboard
ModelArena EloCodingVisionArena HardMMLUVotesOrganizationLicense
πŸ₯‡ Gemini-2.5-Pro14731491134596.414062GoogleProprietary
πŸ₯‡ ChatGPT-4o-latest (2025-03-26)14281439130723599OpenAIProprietary
πŸ₯‡ o3-2025-04-1614261441130120095OpenAIProprietary
πŸ₯‡ DeepSeek-R1-05281424143793.290.812396DeepSeekMIT
πŸ₯‡ Grok-3-Preview-02-241423143592.725067xAIProprietary
πŸ₯‡ Gemini-2.5-Flash14181425130219451GoogleProprietary
πŸ₯‡ GPT-4.5-Preview14151418125415271OpenAIProprietary
πŸ₯ˆ Gemini-2.0-Flash-Thinking-Exp-01-2113981380127527613GoogleProprietary
πŸ₯ˆ Gemini-2.0-Pro-Exp-02-0513971396123920120GoogleProprietary
πŸ₯ˆ Qwen3-235B-A22B-no-thinking1389141395.688.514090AlibabaApache 2.0
πŸ₯ˆ GPT-4.1-2025-04-1413851391127617456OpenAIProprietary
πŸ₯ˆ DeepSeek-V3-03241384140085.588.520171DeepSeekMIT
πŸ₯ˆ Hunyuan-Turbos-20250416138013858244TencentProprietary
πŸ₯ˆ DeepSeek-R11375138093.290.819430DeepSeekMIT
πŸ₯ˆ Minimax-M1137413736117MiniMaxApache 2.0
πŸ₯ˆ Claude Opus 4 (20250514)13721413123019708AnthropicProprietary
πŸ₯ˆ Mistral Medium 313691388120218439MistralProprietary
πŸ₯ˆ Qwen3-235B-A22B1367139395.688.513817AlibabaApache 2.0
πŸ₯ˆ o1-2024-12-1713671375122992.191.829038OpenAIProprietary
πŸ₯ˆ o4-mini-2025-04-1613641382125617150OpenAIProprietary
πŸ₯ˆ Gemini-2.0-Flash-00113641362121636673GoogleProprietary
πŸ₯ˆ Qwen2.5-Max1363136831778AlibabaProprietary
πŸ₯ˆ Grok-3-Mini-beta136113819759xAIProprietary
πŸ₯ˆ Gemma-3-27B-it13611344122425902GoogleGemma
πŸ₯ˆ Claude Sonnet 4 (20250514)13451385122415543AnthropicProprietary
πŸ₯ˆ o3-mini-high1342137919404OpenAIProprietary
πŸ₯ˆ GPT-4.1-mini-2025-04-1413381372124116454OpenAIProprietary
πŸ₯‰ Gemma-3-12B-it133813093976GoogleGemma
πŸ₯‰ DeepSeek-V31336133685.588.522841DeepSeekDeepSeek
πŸ₯‰ QwQ-32B1334134718063AlibabaApache 2.0
πŸ₯‰ Amazon-Nova-Experimental-Chat-05-14133013476343AmazonProprietary
πŸ₯‰ Gemini-2.0-Flash-Lite13301338115726104GoogleProprietary
πŸ₯‰ Qwen-Plus-0125132813366055AlibabaProprietary
πŸ₯‰ GLM-4-Plus-0111132813066028ZhipuProprietary
πŸ₯‰ Command A (03-2025)1327133523879CohereCC-BY-NC-4.0
πŸ₯‰ o3-mini1322136036135OpenAIProprietary
πŸ₯‰ Step-2-16K-Exp132213115126StepFunProprietary
πŸ₯‰ o1-mini132113699254951OpenAIProprietary
πŸ₯‰ Gemini-1.5-Pro-00213201307122258645GoogleProprietary
πŸ₯‰ Claude 3.7 Sonnet (thinking-32k)13151345122125145AnthropicProprietary
πŸ₯‰ Hunyuan-Turbo-0110131413332510TencentProprietary
πŸ₯‰ Llama-3.3-Nemotron-Super-49B-v11314131788.3862371NvidiaNvidia
πŸ₯‰ Gemma-3n-e4b-it130912926311GoogleGemma
πŸ₯‰ Claude 3.7 Sonnet13081344120729775AnthropicProprietary
πŸ₯‰ Yi-Lightning1305131881.52896801 AIProprietary
πŸ₯‰ Grok-2-08-131305129887.567084xAIProprietary
πŸ₯‰ GPT-4o-2024-05-1313021308120679.2188.7117747OpenAIProprietary
πŸ₯‰ Claude 3.5 Sonnet (20241022)13011340118685.288.777078AnthropicProprietary
Deepseek-v2.5-1210129713137243DeepSeekDeepSeek
Athene-v2-Chat-72B129313168526074NexusFlowNexusFlow
Llama-4-Maverick-17B-128E-Instruct12931309119717075MetaLlama 4
Gemma-3-4B-it129312644321GoogleGemma
Hunyuan-Large-2025-02-10128913093856TencentProprietary
GPT-4o-mini-2024-07-1812891298112474.948272531OpenAIProprietary
Gemini-1.5-Flash-00212891270120637021GoogleProprietary
GPT-4.1-nano-2025-04-141288131111186302OpenAIProprietary
Llama-3.1-405B-Instruct-bf161286129688.643788MetaLlama 3.1
Llama-3.1-Nemotron-70B-Instruct1286128784.97577NvidiaLlama 3.1
Llama-3.1-405B-Instruct-fp81285129269.388.663038MetaLlama 3.1
Grok-2-Mini-08-131284127855442xAIProprietary
Yi-Lightning-lite128212821706701 AIProprietary
Qwen-Max-09191281129617432AlibabaQwen
Hunyuan-Standard-2025-02-10127812864014TencentProprietary
Qwen2.5-72B-Instruct127512997841519AlibabaQwen
Llama-3.3-70B-Instruct1275127447256MetaLlama-3.3
GPT-4-Turbo-2024-04-0912741278115182.63102133OpenAIProprietary
Mistral-Small-3.1-24B-Instruct-25031273129611756154MistralApache 2.0
Athene-70B1268126977.620580NexusFlowCC-BY-NC-4.0
GPT-4-1106-preview12671268103748OpenAIProprietary
Mistral-Large-24111266128270.4229633MistralMRL
Llama-3.1-70B-Instruct1265126755.738658637MetaLlama 3.1
Claude 3 Opus12651266107660.3686.8202641AnthropicProprietary
magistral-medium-2506126213133602MistralProprietary
Amazon Nova Pro 1.012621279104426371AmazonProprietary
GPT-4-0125-preview1262125977.9697079OpenAIProprietary
Llama-3.1-Tulu-3-70B126212493010Ai2Llama 3.1
Claude 3.5 Haiku (20241022)12571285115848556AnthropicPropretary
Reka-Core-20240904125312377948Reka AIProprietary
Jamba-1.5-Large1239124381.29125AI21 LabsJamba Open
Deepseek-v2-API-06281237125719508DeepSeek AIDeepSeek
Gemma-2-27B-it1237122557.5179538GoogleGemma license
Hunyuan-Large-Vision1236125812603905TencentProprietary
Qwen2.5-Coder-32B-Instruct123512775730AlibabaApache 2.0
Mistral-Small-24B-Instruct-25011235124815321MistralApache 2.0
Amazon Nova Lite 1.012341251106120646AmazonProprietary
Gemma-2-9B-it-SimPO1234121210548PrincetonMIT
Command R+ (08-2024)1233119710535CohereCC-BY-NC-4.0
Deepseek-Coder-v2-07241232128262.311725DeepSeekProprietary
Gemini-1.5-Flash-8B-00112301224110637697GoogleProprietary
Llama-3.1-Nemotron-51B-Instruct122912263889NvidiaLlama 3.1
Nemotron-4-340B-Instruct1227121420608NvidiaNvidia
Aya-Expanse-32B1227120928768CohereCC-BY-NC-4.0
GLM-4-05201224123263.8410221Zhipu AIProprietary
Llama-3-70B-Instruct1224121546.5782163629MetaLlama 3
Phi-41223123825213MicrosoftMIT
OLMo-2-0325-32B-Instruct122312143460Allen AIApache-2.0
Reka-Flash-20240904122312078132Reka AIProprietary
Claude 3 Sonnet12181229104846.879113067AnthropicProprietary
Amazon Nova Micro 1.01215122620654AmazonProprietary
Gemma-2-9B-it1209118957197GoogleGemma license
Hunyuan-Standard-256K120612432901TencentProprietary
Qwen2-72B-Instruct1205120246.8684.238872AlibabaQianwen LICENSE
GPT-4-0314120412115086.455962OpenAIProprietary
Llama-3.1-Tulu-3-8B120311953074Ai2Llama 3.1
Ministral-8B-2410120012175111MistralMRL
Claude 3 Haiku11971205100041.4775.2122309AnthropicProprietary
Aya-Expanse-8B1197118110391CohereCC-BY-NC-4.0
Command R (08-2024)1197117710851CohereCC-BY-NC-4.0
DeepSeek-Coder-V2-Instruct1196125515753DeepSeek AIDeepSeek License
Llama-3.1-8B-Instruct1193120221.347352578MetaLlama 3.1
Jamba-1.5-Mini1193119669.79274AI21 LabsJamba Open
GPT-4-06131180118337.991614OpenAIProprietary
Qwen1.5-110B-Chat1179119080.427430AlibabaQianwen LICENSE
Yi-1.5-34B-Chat1175117876.82513501 AIApache-2.0
Llama-3-8B-Instruct1169116220.5668.4109056MetaLlama 3
InternLM2.5-20B-chat1166117410599InternLMOther
Claude-1116611517721149AnthropicProprietary
Qwen1.5-72B-Chat1165117636.1277.540658AlibabaQianwen LICENSE
Mixtral-8x22b-Instruct-v0.11165116836.3677.853751MistralApache 2.0
Mistral Medium1165116831.975.335556MistralProprietary
Gemma-2-2b-it1161112351.348892GoogleGemma license
Granite-3.1-8B-Instruct116011893289IBMApache 2.0
Claude-2.01149115023.9978.512763AnthropicProprietary
Gemini-1.0-Pro-0011149111871.818800GoogleProprietary
Zephyr-ORPO-141b-A35b-v0.1114511404854HuggingFaceApache 2.0
Qwen1.5-32B-Chat1143116573.422765AlibabaQianwen LICENSE
Phi-3-Medium-4k-Instruct1140114133.377826105MicrosoftMIT
Granite-3.1-2B-Instruct113711643380IBMApache 2.0
Claude-2.11136114722.7737699AnthropicProprietary
Starling-LM-7B-beta1136114523.0116676NexusflowApache-2.0
GPT-3.5-Turbo-06131134115024.8238955OpenAIProprietary
Mixtral-8x7B-Instruct-v0.11131113023.470.676126MistralApache 2.0
Claude-Instant-11129112473.420631AnthropicProprietary
Yi-34B-Chat1129112223.1573.51591701 AIYi License
Qwen1.5-14B-Chat1126114167.618687AlibabaQianwen LICENSE
WizardLM-70B-v1.01124108763.78383MicrosoftLlama 2
DBRX-Instruct-Preview1121113424.6373.733743DatabricksDBRX LICENSE
Llama-3.2-3B-Instruct112010968390MetaLlama 3.2
Phi-3-Small-8k-Instruct1119112329.7775.718476MicrosoftMIT
Tulu-2-DPO-70B1116110914.996658AllenAI/UWAI2 ImpACT Low-risk
Granite-3.0-8B-Instruct111111137002IBMApache 2.0
Llama-2-70B-chat1110108811.556339595MetaLlama 2
OpenChat-3.5-01061109111865.812990OpenChatApache-2.0
Vicuna-33B110810838.6359.222936LMSYSNon-commercial
Snowflake Arctic Instruct1107109317.6167.334173SnowflakeApache 2.0
Starling-LM-7B-alpha1106109512.863.910415UC BerkeleyCC-BY-NC-4.0
Nous-Hermes-2-Mixtral-8x7B-DPO110210953836NousResearchApache-2.0
Gemma-1.1-7B-it1101110012.0964.325070GoogleGemma license
NV-Llama2-70B-SteerLM-Chat1098103868.53636NvidiaLlama 2
pplx-70B-online109510446898Perplexity AIProprietary
DeepSeek-LLM-67B-Chat1094109571.34988DeepSeek AIDeepSeek License
OpenChat-3.51094107064.38106OpenChatApache-2.0
OpenHermes-2.5-Mistral-7B109210735088NousResearchApache-2.0
Granite-3.0-2B-Instruct109111037191IBMApache 2.0
Mistral-7B-Instruct-v0.21090108912.5720067MistralApache-2.0
Phi-3-Mini-4K-Instruct-June-241088109870.912808MicrosoftMIT
Qwen1.5-7B-Chat10871105614872AlibabaQianwen LICENSE
Phi-3-Mini-4k-Instruct1084110268.821097MicrosoftMIT
Llama-2-13b-chat1081106753.619722MetaLlama 2
SOLAR-10.7B-Instruct-v1.01080106366.24286Upstage AICC-BY-NC-4.0
Dolphin-2.2.1-Mistral-7B108010411714Cognitive ComputationsApache-2.0
WizardLM-13b-v1.21076104152.77176MicrosoftLlama 2
Llama-3.2-1B-Instruct107110628523MetaLlama 3.2
Qwen2.5-VL-32B-Instruct12141505AlibabaApache 2.0
Step-1o-Vision-32k (highres)11862891StepFunProprietary
Llama-4-Scout-17B-16E-Instruct11751542MetaLlama
Qwen2.5-VL-72B-Instruct11693884AlibabaQwen
Pixtral-Large-241111535546MistralMRL
Qwen-VL-Max-111911281449AlibabaProprietary
Qwen2-VL-72b-Instruct11116028AlibabaQwen
Step-1V-32K11111553StepFunProprietary
Molmo-72B-092410763092AI2Apache 2.0
Pixtral-12B-240910727623MistralApache 2.0
Llama-3.2-90B-Vision-Instruct10708829MetaLlama 3.2
InternVL2-26B10675265OpenGVLabMIT
Hunyuan-Standard-Vision-2024-12-311064811TencentProprietary
Aya-Vision-32B1058849CohereCC-BY-NC-4.0
Qwen2-VL-7B-Instruct10545854AliabaApache 2.0
Yi-Vision1046123701 AIProprietary
Llama-3.2-11B-Vision-Instruct10324893MetaLlama 3.2

If you want to see more models, please help us add them.

πŸ’» Code: The Arena Elo ratings are computed by this notebook. The MT-bench scores (single-answer grading on a scale of 10) are computed by fastchat.llm_judge. The MMLU scores are computed by InstructEval. Higher values are better for all benchmarks. Empty cells mean not available. The latest and detailed leaderboard is here.

More Statistics for Chatbot Arena

πŸ”— Arena Statistics

Transition from online Elo rating system to Bradley-Terry model

We adopted the Elo rating system for ranking models since the launch of the Arena. It has been useful to transform pairwise human preference to Elo ratings that serve as a predictor of winrate between models. Specifically, if player A has a rating of RA and player B a rating of RB, the probability of player A winning is

{\displaystyle E_{\mathsf {A}}={\frac {1}{1+10^{(R_{\mathsf {B}}-R_{\mathsf {A}})/400}}}~.}

ELO rating has been used to rank chess players by the international community for over 60 years. Standard Elo rating systems assume a player’s performance changes overtime. So an online algorithm is needed to capture such dynamics, meaning recent games should weigh more than older games. Specifically, after each game, a player’s rating is updated according to the difference between predicted outcome and actual outcome.

{\displaystyle R_{\mathsf {A}}'=R_{\mathsf {A}}+K\cdot (S_{\mathsf {A}}-E_{\mathsf {A}})~.}

This algorithm has two distinct features:

  1. It can be computed asynchronously by players around the world.
  2. It allows for players performance to change dynamically – it does not assume a fixed unknown value for the players rating.

This ability to adapt is determined by the parameter K which controls the magnitude of rating changes that can affect the overall result. A larger K essentially put more weight on the recent games, which may make sense for new players whose performance improves quickly. However as players become more senior and their performance β€œconverges” then a smaller value of K is more appropriate. As a result, USCF adopted K based on the number of games and tournaments completed by the player (reference). That is, the Elo rating of a senior player changes slower than a new player.

When we launched the Arena, we noticed considerable variability in the ratings using the classic online algorithm. We tried to tune the K to be sufficiently stable while also allowing new models to move up quickly in the leaderboard. We ultimately decided to adopt a bootstrap-like technique to shuffle the data and sample Elo scores from 1000 permutations of the online plays. You can find the details in this notebook. This provided consistent stable scores and allowed us to incorporate new models quickly. This is also observed in a recent work by Cohere. However, we used the same samples to estimate confidence intervals which were therefore too wide (effectively CI’s for the original online Elo estimates).

In the context of LLM ranking, there are two important differences from the classic Elo chess ranking system. First, we have access to the entire history of all games for all models and so we don’t need a decentralized algorithm. Second, most models are static (we have access to the weights) and so we don’t expect their performance to change. However, it is worth noting that the hosted proprietary models may not be static and their behavior can change without notice. We try our best to pin specific model API versions if possible.

To improve the quality of our rankings and their confidence estimates, we are adopting another widely used rating system called the Bradley–Terry (BT) model. This model actually is the maximum likelihood (MLE) estimate of the underlying Elo model assuming a fixed but unknown pairwise win-rate. Similar to Elo rating, BT model is also based on pairwise comparison to derive ratings of players to estimate win rate between each other. The core difference between BT model vs the online Elo system is the assumption that player’s performance does not change (i.e., game order does not matter) and the computation takes place in a centralized fashion.