Chatbot Arena
This leaderboard is based on the following benchmarks. Chatbot Arena - a crowdsourced, randomized battle platform for large language models (LLMs). We use 2.5M+ user votes to compute Elo ratings. MMLU (5-shot) - a test to measure a model’s multitask accuracy on 57 tasks. Arena-Hard-Auto - an automatic evaluation tool for instruction-tuned LLMs.
DeepSeek-R1
We introduce DeepSeek’s first-generation reasoning models: DeepSeek-R1-Zero and DeepSeek-R1. DeepSeek-R1-Zero, a model trained via large-scale reinforcement learning (RL) without supervised fine-tuning (SFT) as a preliminary step, demonstrated remarkable performance on reasoning. DeepSeek-R1 incorporates cold-start data before RL, and achieves performance comparable to OpenAI-o1 across math, code, and reasoning tasks. With RL, DeepSeek-R1-Zero naturally emerged with numerous powerful and interesting reasoning behaviors.
DeepSeek-V3
We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token. To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in DeepSeek-V2. Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance.
Coder EvalPlus
EvalPlus is a rigorous evaluation framework for LLM4Code, with: ✨ HumanEval+: 80x more tests than the original HumanEval! ✨ MBPP+: 35x more tests than the original MBPP! ✨ Evaluation framework: our packages/images/tools can easily and safely evaluate LLMs on above benchmarks. File a request to add your models on our leaderboard!
SGLang v0.4
We’re excited to announce the release of SGLang v0.4, featuring significant performance improvements and new features: Zero-overhead batch scheduler: 1.1x increase in throughput. Cache-aware load balancer: up to 1.9x increase in throughput with 3.8x higher cache hit rate. Data parallelism attention for DeepSeek models: up to 1.9x decoding throughput improvement. Fast structured outputs with xgrammar: up to 10x faster.
Speculative Decoding in vLLM
Speculative decoding in vLLM is a powerful technique that accelerates token generation by leveraging both small and large models in tandem. In this blog, we’ll break down speculative decoding in vLLM, how it works, and the performance improvements it brings. This content is based on a session from our bi-weekly vLLM Office Hours, where we discuss techniques and updates to optimize vLLM performance.
vLLM v0.6
vLLM achieves 2.7x higher throughput and 5x faster TPOT (time per output token) on Llama 8B model, and 1.8x higher throughput and 2x less TPOT on Llama 70B model. A month ago, we released our performance roadmap committing to performance as our top priority. We will start by diagnosing the performance bottleneck in vLLM previously.
SGLang v0.3
We’re excited to announce the release of SGLang v0.3, which brings significant performance enhancements and expanded support for novel model architectures. Here are the key updates: Up to 7x higher throughput for DeepSeek Multi-head Latent Attention (MLA). Up to 1.5x lower latency with torch.compile on small batch sizes. Support for interleaved text and multi-image/video in LLaVA-OneVision.